
Uitnodiging

Voor het bijwonen van de
openbare verdediging van
mijn proefschrift, getiteld:

Efficient Simulation
Techniques for

Stochastic Model
Checking

De verdediging vindt plaats
op vrijdag 6 december 2013

om 14:45 in de
prof. dr. G. Berkhoff-zaal

(Waaier 4) van de
Universiteit Twente.

Voorafgaand geef ik om
14:30 een korte toelichting

op de inhoud van mijn
proefschrift.

Aansluitend bent u van harte
welkom op de receptie.

Daniël Reijsbergen
d.p.reijsbergen@utwente.nl

Efficient Simulation Techniques
for Stochastic Model Checking

Daniël ReijsbergenCTIT Ph.D.-thesis Series No. 13-281

Eff
icient Sim

ulation Techniques for Stochastic M
odel C

hecking
D

aniël Reijsbergen

Efficient Simulation Techniques
for Stochastic Model Checking

Daniël Reijsbergen

Graduation committee:

Chairman: prof. dr. ir. A.J. Mouthaan
Promoter: prof. dr. ir. B.R.H.M. Haverkort
Promoter: prof. dr. R.J. Boucherie
Assistant promoter: dr. ir. P.T. de Boer
Assistant promoter: dr. ir. W.R.W. Scheinhardt

Members:
dr. G. Rubino INRIA Rennes / IRISA
prof. dr. M.R.H. Mandjes University of Amsterdam
dr. A.A.N. Ridder Vrije Universiteit Amsterdam
prof. dr. J.C. van de Pol University of Twente
dr. ir. E.A. van Doorn University of Twente

CTIT Ph.D.-thesis Series No. 13-281
Centre for Telematics and Information Technology
University of Twente
P.O. Box 217, NL – 7500 AE Enschede

ISSN 1381-3617
ISBN 978-90-365-3586-1

Printed by Gildeprint Drukkerijen
Cover fractal designed using Apophysis

Copyright © Daniël Reijsbergen 2013

This work is supported by the Netherlands Organisation for Scientific Research
(NWO), project no. 612.064.812.

EFFICIENT SIMULATION TECHNIQUES
FOR STOCHASTIC MODEL CHECKING

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
Prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties,
in het openbaar te verdedigen

op vrijdag 6 december 2013 om 14.45 uur

door

Daniël Petrus Reijsbergen

geboren op 10 september 1985
te ’s Gravenhage, Nederland

Dit proefschrift is goedgekeurd door:
prof. dr. ir. B.R.H.M. Haverkort (promotor)
prof. dr. R.J. Boucherie (promotor)
dr. ir. P.T. de Boer (assistent promotor)
dr. ir. W.R.W. Scheinhardt (assistent promotor)

Abstract

In this thesis, we focus on methods for speeding-up computer simulations of stochas-
tic models. We are motivated by real-world applications in which corporations for-
mulate service requirements in terms of an upper bound on a probability of failure.
If one wants to check whether a complex system model satisfies such a requirement,
computer simulation is often the method of choice. We aim to aid engineers during
the design phase, so a question of both practical and mathematical relevance is how
the runtime of the simulation can be minimised.

We focus on two settings in which a speed-up can be achieved. First, when the
probability of failure is low, as is typical in a highly reliable system, the time before
the first failure is observed can be impractically large. Our research involves im-
portance sampling; we simulate using a different probability measure under which
failure is more likely, which typically decreases the variance of the estimator. In
order to keep the estimator unbiased, we compensate for the resulting error using
the Radon-Nikodym theorem. If done correctly, the gains can be huge. However, if
the new probability measure is unsuited for the problem setting the negative conse-
quences can be similarly profound (infinite variance is even possible). In our work,
we have extended an importance sampling technique with good performance (i.e.,
proven to have bounded relative error) that was previously only applicable in re-
stricted settings to a broad model class of stochastic (Markovian) Petri nets. We
have also proposed methods to alleviate two well-known problems from the rare
event simulation literature: the occurrence of so-called high-probability cycles and
the applicability to large time horizons. For the first we use a method based on
Dijkstra’s algorithm, for the second we use renewal theory.

Second, it often occurs that the number of needed simulation runs is overesti-
mated. As a solution, we use sequential hypothesis testing, which allows us to stop
as soon as we can say whether the service requirement is satisfied. This area has
seen a lot of recent interest from the model checking community, but some of the
techniques used are not always perfectly understood. In our research we have com-
pared the techniques implemented in the most popular model checking tools, iden-
tified several common pitfalls and proposed a method that we proved to not have
this problem. In particular, we have proposed a new test for which we bounded the
probability of an incorrect conclusion using martingale theory.

vi

Samenvatting

In dit proefschrift richten we ons op methoden om computersimulaties van stochas-
tische modellen te versnellen. Onze motivatie vinden we in praktijksituaties waarin
bedrijven een serviceniveau garanderen in termen van een bovengrens op de kans
dat hun dienst niet meer (volledig) kan worden geleverd. Om te controleren of
een complex systeemmodel aan een dergelijke eis voldoet heeft computersimulatie
als methode veelal de voorkeur. Aangezien we ingenieurs tijdens de ontwerpfase
trachten te helpen is een zowel vanuit praktisch als wiskundig oogpunt interessante
vraag hoe we de duur van de simulaties zoveel mogelijk kunnen verkorten.

We richten ons op twee situaties waarin een versnelling kan worden bereikt. Ten
eerste geldt dat als de kans op systeemfalen klein is, wat men mag verwachten in
een highly reliable system, het onpraktisch lang kan duren totdat de eerste faalgebeur-
tenis zich voordoet in de simulatie. In ons onderzoek passen we importance sampling
toe; we simuleren onder een kansmaat waarin systeemfalen waarschijnlijker wordt
gemaakt, wat in het algemeen de variantie van de schatter verkleint. Teneinde de
schatter zuiver te houden compenseren we middels de Radon-Nikodym-stelling
voor de resulterende afwijking. Als dit goed wordt uitgevoerd kan de winst enorm
zijn. Als de nieuwe kansmaat echter ongeschikt is voor de probleemsituatie kun-
nen de negatieve consequenties even ingrijpend zijn (oneindige variantie is moge-
lijk). In dit proefschrift hebben we een goed presterende simulatietechniek (waar-
voor bewezen is dat het de eigenschap van bounded relative error bezit) voor zeld-
zame gebeurtenissen (‘rare events’), die voorheen slechts in beperkte gevallen toe-
pasbaar was, uitgebreid naar de brede modelklasse van stochastische (Markovse)
Petri-netten. We hebben tevens methoden voorgesteld om twee bekende proble-
men in de literatuur omtrent simulatie van rare events te verhelpen: het voorkomen
van zogeheten high-probability cycles en de toepasbaarheid op modellen die lange
tijdsduren bestrijken. Voor het eerste geval gebruikten we een methode gebaseerd
op Dijkstra’s algoritme, voor de tweede gebruikten we vernieuwingstheorie.

Ten tweede komt het vaak voor dat wordt overschat hoe vaak men de simula-
tie moet draaien. Als oplossing gebruiken we sequentiële hypothesetoetsing, wat
ons in staat stelt op te houden zodra we kunnen zeggen of aan de garantie op het
serviceniveau is voldaan. Dit onderzoeksgebied heeft recentelijk veel aandacht ge-
kregen vanuit de model-checkinggemeenschap, maar niet alle technieken worden
altijd even goed begrepen. In ons onderzoek hebben we een aantal technieken met
elkaar vergeleken die zijn geïmplementeerd in de meest populaire model checking
tools, enkele gemeenschappelijke valkuilen benoemd en een methode voorgesteld
waarvan we bewezen hebben dat die dit probleem omzeilt.

Contents

1 Introduction and Preliminaries 1
1.1 Model Checking . 3

1.1.1 Non-Probabilistic Model Checking 4
1.1.2 Probabilistic Model Checking 5
1.1.3 High-Level Model Description Languages 7
1.1.4 Algorithms for Probabilistic Model Checking 10
1.1.5 Model Assumptions . 12

1.2 Monte Carlo Simulation . 12
1.2.1 Estimating path and steady-state probabilities 13
1.2.2 Path Generation . 14

1.3 Principles of Importance Sampling . 14
1.3.1 Intuitive Description . 15
1.3.2 Basic Setup of Importance Sampling 15
1.3.3 Variance of Importance Sampling Estimators 16
1.3.4 Failure Biasing and Forcing . 17
1.3.5 Zero Variance . 17

1.4 Contributions of this Thesis . 18

2 Sequential Hypothesis Testing 21
2.1 General Framework . 23

2.1.1 Assumptions . 23
2.1.2 Statistical Framework . 24

2.2 Known Statistical Hypothesis Tests . 27
2.2.1 Gauss Test . 27
2.2.2 Sequential Probability Ratio Test (SPRT) 30
2.2.3 Chernoff Test . 32
2.2.4 Bayesian SPRT . 33

2.3 The New Supergaussian Sequential Tests 35
2.3.1 The Desired Shape of the Non-Critical (NC) Areas 35
2.3.2 Azuma Test . 36
2.3.3 Darling Test . 40
2.3.4 Optimal Parameter Choice . 41

2.4 Results and Comparisons . 43
2.4.1 Shape of the Non-Critical Areas (NC) 44
2.4.2 Simulation Results . 45

2.5 Steady-State Measures . 49

x CONTENTS

2.6 Conclusions and Discussion . 51
2.6.1 Hypothesis Testing for Importance Sampling 52

3 Rarity Regimes in the Birth-Death Process 55
3.1 The Birth-Death Process . 56

3.1.1 Definition . 56
3.1.2 Performance Measures . 57

The (Transient) Unreliability 57
The Conditional Unreliability 59
The Unavailability . 60

3.1.3 Straight Paths and Cycles . 61
3.2 Rarity Regimes in the Birth-Death Process 62

3.2.1 The Regimes λ ↓ 0 and τ̄ ↓ 0 (Slow Component Failures) . . . 62
3.2.2 The Regime µ→∞ (Fast Component Repairs) 64
3.2.3 The Regime n→∞ (Many Spares) 64
3.2.4 The Regime τ̄ →∞ (Large Mission Time) 65

3.3 The Regime τ̄ →∞: Fast Simulation for Slow Paths 65
3.3.1 Conditional Sojourn Times . 66
3.3.2 Simulation . 68
3.3.3 Simulation Results . 69

3.4 Conclusions . 71

4 Networks of Parallel Birth-Death Processes 73
4.1 Standard Dedicated Repair . 73

4.1.1 Model Description . 74
4.1.2 The Distributed Database System (DDS) 74

Model Description . 75
Operation and Failure . 76
The Benchmark Case and Generalisations 77

4.1.3 Approximating πψτ̄ using Straight Paths 77
4.1.4 Simulation Results . 79

Experimental Setup . 79
Unavailability . 80
Unreliability . 82

4.2 General Busy Cycle Durations . 84
4.2.1 Non-Memoryless Busy Cycles 85
4.2.2 Non-Rare Paths . 87
4.2.3 Simulation Results . 89

Single Component Type . 89
Multiple Component Types . 89

4.3 Shared Repair Facilities . 92
4.4 Conclusions and Discussion . 94

4.4.1 General Conclusions . 94
4.4.2 Complexity . 95
4.4.3 Generalisations and Future Work 96

CONTENTS xi

5 Dominant Paths in General Markov Chains 97
5.1 Model Setting . 99
5.2 Dijkstra-based Algorithm . 102

5.2.1 Forward Phase . 102
5.2.2 Backward Phase . 104
5.2.3 Properties of the Algorithm . 105

5.3 Bounded Relative Error . 109
5.4 Vanishing Relative Error . 112
5.5 Time-Bounded Probabilities . 114
5.6 Conclusion . 119

6 Variance Reduction for Free 121
6.1 The Two New Methods . 121
6.2 Performance of the Methods . 123

6.2.1 Comparing π̂ψ to π̂+
ψ . 123

6.2.2 Comparing π̂ψ to π̂++
ψ . 124

6.2.3 Comparing π̂+
ψ to π̂++

ψ . 125
6.3 Illustrative Example . 125
6.4 Numerical Results . 129

6.4.1 Illustrative Example . 130
6.4.2 Two Path Model . 131

6.5 Conclusions . 134

7 Dominant Paths in Stochastic Petri Nets 135
7.1 Context within the literature . 136
7.2 Model Setting . 136

7.2.1 Reliability Modelling Using Petri Nets 137
7.2.2 Running Example . 137
7.2.3 Problem Setting . 137
7.2.4 Efficient Simulation . 138

7.3 Determining the Distance Function . 139
7.3.1 Main Loop . 140
7.3.2 Initialisation Phase (initZoneGraph) 140
7.3.3 Divide Zones by Path Existence (possibilitySplit) 142
7.3.4 Divide Zones by Costs (costSplit) 144
7.3.5 Update the step list (update and alterS) 146

7.4 Empirical Results . 146
7.4.1 Case Description . 147
7.4.2 Results of the Distance Finding Algorithm 147
7.4.3 Simulation Results . 147

7.5 Proof of Correctness . 149
7.6 Conclusions and Discussion . 153

7.6.1 Termination . 154
7.6.2 Integrality . 154

xii CONTENTS

7.6.3 Importance Sampling Efficiency 155

8 Conclusions 157
8.1 Contributions . 157
8.2 Future Work . 158

8.2.1 Hypothesis Testing . 159
8.2.2 Automated Rare Event Simulation 160
8.2.3 Combining Hypothesis Testing and Rare Event Simulation . . 161

Bibliography 163

List of Acronyms 171

About the Author 173

Acknowledgements 175

CHAPTER 1

Introduction and Preliminaries

Society, and even human life increasingly depend on the faultless operation of
technology-based products and services. Consequently, faults in software or hard-
ware systems incur great costs. In the best case, these faults cause annoyances and,
as a result, the producer or service provider loses money. In the worst case, peo-
ple’s safety is at stake [10]. Formal verification techniques for the analysis of sys-
tem performance are becoming indispensable as a result of these developments.
Unfortunately, perfect guarantees about the reliability of real-world systems are of-
ten impossible to give, so companies typically need to formulate requirements in
terms of probabilities of failure. If companies can detect that their requirements
are not met before their product (or service) reaches the final stages of production,
this may allow them to make the necessary changes. However, being able to de-
tect faults before actual deployment of the product requires an adequate model of
the underlying system. Furthermore, it must be possible to compute or estimate
the relevant probabilities in the model. This is usually done using a computer tool.
As engineers need the tool during the design phase, it is vital that the runtime of
the tool’s algorithms is as small as possible. The focus of this thesis is to develop
methods that reduce the runtime and which can be mathematically proven not to
produce inaccurate results.

The use of verification techniques based on system models is called model-based
verification. The most basic modelling formalism used for model-based verification
techniques is that of transition systems: systems that consist of states and transitions
that determine changes of the state. A specific realisation of the behaviour of the
system model is then a sequence of state changes that we will call a path. Require-
ments on the system behaviour are specified, through a formal language, as require-
ments on paths. For non-probabilistic systems we use requirements given in terms
of the existence of paths satisfying a certain requirement (e.g., there does not exist
a path in which we reach deadlock before termination). In probabilistic systems, we
are instead interested in probabilities of paths satisfying a certain requirement (e.g.,
the probability of seeing a path in which we reach deadlock before termination is
less than 5%).

Model checking [10, 25] is (among others such as equivalence checking) a very
popular model-based verification technique. A model checking algorithm exhaus-
tively examines paths until a conclusion can be reached about whether the require-
ment is satisfied or not. For realistic models, the minimum number of paths that

2 1. INTRODUCTION AND PRELIMINARIES

need to be considered can be huge. As the number of (reachable) states in the sys-
tem model increases the number of paths follows suit, possibly up to the point
where numerical model checking algorithms become computationally infeasible.
This is called the state (space) explosion problem [23]. One remedy is to use discrete-
event simulation to generate a random selection of paths; based on this sample a
statistically motivated statement can be made about the validity of the system re-
quirement. This methodology is called statistical model checking [106, 115].

The main goal of this thesis is to achieve speed-ups for statistical model check-
ing techniques. Focus will be on the investigation of properties that compare the
probability that some event occurs to some boundary value. We focus on two main
events. The first is the event that the system reaches some rare goal state before it
reaches some more typical termination state. The second is the event that the sys-
tem reaches some rare goal state before it reaches some more typical termination
state and before some fixed time bound has been crossed. Additionally, in some
parts of the thesis we will consider properties involving the long-term fraction of
time that we reside in the set of goal states. We will formally specify all of these
properties in the remainder of this chapter.

The speed-ups that we seek to achieve for statistical model checking fall into
two main categories. First, it often occurs that the number of needed sample paths
is chosen too large. As a solution, we use sequential hypothesis testing [69], which
allows us to stop as soon as we can say whether the service requirement is satisfied.
This area has seen a lot of recent interest from the model checking community and
we aim to aid user understanding of the methods. Second, when the probability of
failure is low, as is typical in a highly reliable system, we need to draw an imprac-
tically large number of samples before the first failure is observed. Our research
involves importance sampling [50]; we simulate using a different probability mea-
sure under which failure is more likely, which typically speeds up the verification
process. If done correctly, the gains can be huge. However, if the new probabil-
ity measure is unsuited for the problem setting the negative consequences can be
similarly profound. We aim to develop importance sampling techniques that have
provably good performance for broad classes of modelling formalisms.

This thesis contains the following results for the two categories of speed-ups. We
compare the hypothesis testing techniques implemented in the most popular model
checking tools, identify several common potential pitfalls and propose a method
that we proved to avoid these pitfalls. In particular, we propose a new test for
which we bound the probability of an incorrect conclusion using martingale the-
ory. Furthermore, we propose concrete rare event simulation techniques with prov-
ably good performance for several broad model classes. We also propose a novel
technique that exploits information gained while constructing the new probability
measure to achieve further speed-ups. A more detailed summary of contributions
is given at the end of this chapter

In the rest of Chapter 1, we fix notation and discuss the position of our work in
the broader context of the model checking and rare event simulation literature. We
will begin in Section 1.1 by explaining model checking. We explain the formalisms

1.1 Model Checking 3

and languages that we will use in full generality, even though this thesis addresses
only a subset of problems expressible in this manner. We maintain a very general
scope for motivational purposes and to explain the position of our work in the
context of the broader literature. We then explain standard simulation in Section 1.2
and rare event simulation in Section 1.3. In Section 1.4 we outline the remaining
chapters of the thesis and highlight the contributions.

1.1 Model Checking

The basic model checking problem is the following: given a system model in the
form of a transition system, does a given state x in the model satisfy some formally
defined property Φ? If x does satisfy Φ, we write x � Φ, otherwise we write x 2 Φ.
Although many problems from applied mathematics can be cast into this frame-
work, the defining characteristic of model checking algorithms is their generality.
The aim is to define a model class and a property specification language that are as
broad as possible such that all expressible problems can be solved by the same
model checking algorithm.

Seminal in the field of model checking was the work of E. Clarke and E. Emer-
son on the so-called Computation Tree Logic (CTL) for non-probabilistic (temporal)
models [22], for which they, together with J. Sifakis, received the 2007 Turing Award
(the ‘Nobel Prize’ of computer science). Their work was later extended with prob-
abilities, resulting in the languages Probabilistic CTL (PCTL) [48] and Continuous
Stochastic Logic (CSL) [4, 7].

In Section 1.1.1 we present CTL. Although non-probabilistic models will not ap-
pear later in the thesis, we have three reasons to do this: it provides motivational
background, it makes the position of this thesis in the wider model checking litera-
ture more clear and the concepts from the non-probabilistic setting translate nicely
to the probabilistic setting. In Section 1.1.2, we then discuss the extension to prob-
abilistic systems; we discuss the type of probabilistic models that we are interested
in (Markov models), and discuss PCTL and CSL. In Section 1.1.3, we describe the
high-level language of stochastic Petri nets that we use to describe large (Markov)
models in a concise way. In Section 1.1.4, we discuss the most common algorithms
for probabilistic model checking and their strengths and weaknesses. In particular,
we discuss simulation-based algorithms as they will be the focus of the rest of this
thesis. In Section 1.1.5 we discuss several assumptions about the model class, and
how they affect notation.

As a general note: although this section contains a discussion of model checking
techniques in their full generality, the contents of the remainder of this thesis are
largely described in terms of Markov chains. Hence, it may be preferable for some
readers to avoid studying every part of this section in full detail (this is particularly
true for Sections 1.1.1 and 1.1.2 and instead focus on the introduction of notation.

4 1. INTRODUCTION AND PRELIMINARIES

1.1.1 Non-Probabilistic Model Checking
For a computerised model checking tool to be able to validate whether a state in
a system model satisfy a property, it is crucial that the property is unambiguously
defined. CTL is a formal language with which to unambiguously express properties
in non-probabilistic systems. It can be used to assert about a state xwhether certain
behaviour is possible or impossible starting from x. Examples of expressions in CTL
include saying about state x that from x some desirable behaviour will always occur
(‘liveness’) or that from x some undesirable behaviour will never occur (’safety’). In
this section, we begin by formally introducing the model class before moving on to
the property language CTL. Because we aim to keep notation as uniform as possible
throughout the thesis, the way we introduce CTL is different from what is usually
found in the model checking literature. Particularly, properties of interest will be
divided into state and path properties1, as we discuss later on.

The basic model for non-probabilistic model checking is a Labelled Transition
System (LTS) [10]. Let A be a set of atomic propositions, fundamental properties of
states which are assigned by the modeller to the states and which correspond to
real-world interpretations of the state. E.g., A could be {sleeping, idle, busy} for a
model of a signal processor or {empty, full} for a queueing model. Also, let 2A be
the power set of A. Then an LTS is a tuple (X ,T ,L) where X is a countable set of
states called the state space, the matrix T = (txz)x,z∈X which is given by

txz =

{
1 if there is a transition from x to z, and
0 otherwise,

gives the transition relation in the system, and L : X → 2A is the labelling function
which assigns to each state a set of atomic propositions. A path (of infinite length) ω
is then a sequence (xω0 , x

ω
1 , . . .) of states in X .2 Let Ω be the set of possible (infinite)

paths, i.e., paths for which
∞∏
i=1

txωi−1x
ω
i

= 1.

Interesting behaviour in the system is then specified in terms of properties of the
states and paths. These properties are given the form of state and path formulae.
The state and path formulae that we use to define CTL will be given in the form of
a context-free grammar [19]: essentially, this means that for both types of formulae
we will list all possible expressions, where some expressions may recursively be
defined by other expressions of the same form (e.g., an expression for Φ may contain
Φ′, which follows the same rules). Let a path formula φ in the non-probabilistic
setting be given by

φ := XΦ | ΦUΦ′,

1Path properties are formally the focus of the language LTL [85], but since we do not consider refined
path properties, such as ♦�Φ that can occur in LTL, we restrict ourselves to the path properties needed
to define CTL and its probabilistic extensions.

2We use the notation (xω0 , x
ω
1 , . . .) instead of (ω0, ω1, . . .) for two reasons. First, we use (ω1, . . . , ωN)

to denote a sample consisting of N sample paths. Second, we will later add transition times to the paths
at which point we need to emphasise the states in the path anyway.

1.1 Model Checking 5

where Φ and Φ′ are CTL-state formulae, which will be discussed below. The seman-
tics for path formulae are as follows for each path ω ∈ X :

• ω � XΦ iff xω1 � Φ,
• ω � ΦUΦ′ iff ∃k ∈ N s.t. ∀j < k : xωj � Φ and xωk � Φ′.

We can define CTL using these path formulae. Let a CTL-state formula Φ be given
by

Φ := true | a | ¬Φ′ | Φ′ ∨ Φ′′ | Eφ | Aφ,

where Φ′ and Φ′′ use the same grammar as Φ. The semantics for state formulae are
as follows, for each state x ∈ X [10]:

• x � true for all x ∈ X ,
• x � a iff a ∈ L(x),
• x � ¬Φ′ iff x 2 Φ′,
• x � Φ′ ∨ Φ′′ iff x � Φ′ or x � Φ′′,
• x � Eφ iff ∃ω s.t. xω0 = x and ω � φ,
• x � Aφ iff ∀ω s.t. xω0 = x it holds that ω � φ.

Additionally, we use the following shorthand notation: E (♦Φ) for E (trueUΦ)
(there exists a path in which we eventually reach Φ) and A (♦Φ) for A (trueUΦ)
(in all paths we eventually reach Φ). Furthermore, we write E (�Φ) for ¬A (♦¬Φ)
(there exists a path on which globally Φ holds) — the expression A (�Φ) is de-
fined analogously. This way, we can quickly express interesting system properties
such as A (�¬deadlock) (i.e., it always holds that we are not in a deadlock) and
A (idleU busy) (i.e., it always holds that at some point the system will become busy,
and before that it was always idle). We can also derive common logical operators
such as ∧ and⇒ from ¬ and ∨.

Given a CTL-state formula Φ one uses graph-based algorithms based on fixed
point computations to determine whether states satisfy Φ. A fundamental property
of the algorithms used for CTL-model checking is that once they terminate, we
know for all states in X whether they satisfy Φ. A result is that we can use these
algorithms to verify so-called nested CTL-formulae such as E (♦A (�Φ)) (i.e., there
exists a path such that we eventually reach a state in which it holds that all paths
from that state globally satisfy Φ).

1.1.2 Probabilistic Model Checking

CTL model checking allows us to formulate hard guarantees about system perfor-
mance such as “the system will never deadlock”, but in practice such certainty may
be unattainable. Instead of guaranteeing that there does not exist a path in which
some undesirable event happens, we want to guarantee that the probability that such
a path occurs is small. Hence, we need a notion of probabilities of paths. The widely
used stochastic formalism that we consider in this thesis is that of the Markov chain.

6 1. INTRODUCTION AND PRELIMINARIES

In analogy with our definition of an LTS, let a (labelled) Discrete-Time Markov
Chain (DTMC) [49] be a tuple (X , P,L) where X and L have the same interpretation
as for the LTS, but where P = (pxz)x,z∈X is a stochastic matrix, i.e.,

0 ≤ pxz ≤ 1 ∀x, z ∈ X and
∑
z∈X

pxz = 1 ∀x ∈ X .

The evolution of the state of the DTMC in an execution path ω is then a stochas-
tic process (Xω

i)i∈N governed by the probability measure P defined as follows. If,
during an execution of the system, we have so far observed a path (xω0 , x

ω
1 , . . . , x

ω
i),

then

P
(
Xω
i+1 = z

∣∣Xω
i = xωi , . . . , X

ω
0 = xω0

)
= P

(
Xω
i+1 = z

∣∣Xω
i = xωi

)
= pxωi z

The probability of observing a certain finite path ω = (xω0 , x
ω
1 , . . . , x

ω
|ω|) is then given

by

P(ω) =

|ω|∏
i=1

pxωi−1x
ω
i
.

One easily shows by induction that P defines a valid probability measure given a
starting state xω0 — we write Pxω0 if the starting state is not clear from the context
and otherwise P for brevity. The probability of a path of infinite length follows
by taking the limit |ω| → ∞ (this probability is non-zero if a state is reached for
which all subsequent transitions occur with probability 1. A common example is
an absorbing state: a state x such that pxx = 1). Let an event be a set of paths. The
probability of an event is then simply the sum of the probabilities of its elements.
Since the satisfaction of a CTL-path formula is an event, we can now reason about
probabilities of satisfying path formulae. This gives rise to the property specifica-
tion language for DTMCs called probabilistic CTL (PCTL). For PCTL-state formulae,
the existential and universal quantifiers E and A are replaced by the probabilistic
operator P./p(φ), which holds for a state x ∈ X iff Px({ω : ω � φ}) ./ p with ./
∈ {≤,≥}. Also, a new path formula is added, namely the bounded until formula
ΦU≤mΦ′, which holds for a path ω iff ∃k ≤ m s.t. ∀j < k : ωj � Φ and ωk � Φ′. This
is summarised in Table 1.1.

A second, alternative notion of probabilistic behaviour in an LTS is that of the
(labelled) Continuous-Time Markov Chain (CTMC). A CTMC is a DTMC augmented
with continuous (specifically: exponentially distributed) transition times. Hence,
a path ω in a CTMC is timed, i.e., it is a sequence of states and of (increasing)
time points at which state changes occur, written as ω = (xω0 , τ

ω
1 , x

ω
1 , . . . , x

ω
|ω|, τ

ω
|ω|),

where for all i ∈ {0, . . . , |ω|} it holds that xωi ∈ X and τωi ∈ R+ (we fix τω0 = 0 for all
ω). Specifically, τωi is a realisation of T ω

i , where T ω
i is the random variable defined

to be the time point in execution path ω at which the system moves from state xωi−1

to state xωi . Let Ω be the set of all timed paths.
The CTMC itself is a tuple (X , P, η,L), where η : X → (0,∞) such that, for

x ∈ X , η(x) (also written as ηx) is the exit rate of state x. The time Ti+1 − τi that

1.1 Model Checking 7

we spend in state xi is then exponentially distributed with rate ηxi , and the rate of
jumping from state xi to xi+1 is given by η(xi)·pxixi+1 . Probabilities on timed paths
are then given by the probability measure P for CTMCs which is uniquely defined
by the relation in which, if we have so far observed a path (xω0 , τ

ω
1 , x

ω
1 , . . . , x

ω
i , τ

ω
i),

P
(
Xω
i+1 = z, T ω

i+1 − T ω
i < t

∣∣ (Xω
0 , T ω

1 , . . . , Xω
i , T ω

i) = (xω0 , τ
ω
1 , . . . , x

ω
i , τ

ω
i)
)

=

P
(
Xω
i+1 = z, T ω

i+1 − τωi < t
∣∣Xω

i = xωi
)

= pxω
i z

(
1− e−η(xω

i)t
)
.

An example of a CTMC can be found in Figure 3.1.
The property specification language for CTMC is the Continuous Stochastic Logic

(CSL). It is similar to PCTL, except that it also has a bounded next X I alongside the
bounded until, and the notion of the time bounds is now continuous instead of dis-
crete. More detail can be found in Table 1.1. Also, for CSL the steady-state operator
S./p(Φ) was introduced, which is satisfied in state x iff limk→∞ Px({ω : ωk � Φ})
exists and is ./ p. If the underlying Markov chain is strongly connected, then
this property is either satisfied in all states or in none, but if X consists of more
than one disjoint strongly connected component then its satisfaction may be state-
dependent.

Throughout this thesis, we will use the shorthand notation Px(φ) = Px({ω : ω � φ})
where φ can be a PCTL- or a CSL-path formula.

1.1.3 High-Level Model Description Languages

While the core modelling formalisms used for PCTL and CSL model checking those
of Markov chains, the Markov chains themselves are often not specified explicitly
at the state level. Instead, one uses a higher (architectural) level from which the
underlying Markov chain can be generated automatically using well-known state-
space exploration algorithms. Typically, high-level descriptions are closer to the
view of the system designer and they allow models consisting of a vast number of
states to be specified with relative ease. A downside is that the size of the state space
is sometimes larger than necessary (i.e., they may contain clusters of states that may
be lumped [32]). However, these languages are very well suited for techniques that
do not require explicit knowledge of the state space, such as the simulation-based
techniques to be discussed in Section 1.1.4.

A common high-level description language is the Architecture Analysis & Design
Language (AADL) [38]. To make dependability analysis possible, AADL-based mod-
els can be transformed [101] into more basic high-level models such as a Stochas-
tic Petri Net (SPN). SPNs will be the only high level models that we consider in
this thesis (mainly in Chapter 7). SPNs are the probabilistic extension of the non-
probabilistic formalism of the Petri net, the same way PCTL and CSL compare to
CTL. A formal definition is given below.

In the following, we will describe Multi-Guarded Petri Nets as in [58], although
we extend the net with marking-dependent firing rates for the transitions. We
only discuss the concepts of SPNs that we need for the rest of the thesis; for a

8 1. INTRODUCTION AND PRELIMINARIES

state properties:
x � Φ iff

model non-prob. LTSs DTMCs CTMCs
language CTL PCTL CSL

Φ = true x ∈ X
Φ = a a ∈ L(x)
Φ = ¬Φ′ x 2 Φ′

Φ = Φ′ ∨ Φ′′ x � Φ′ or x � Φ′′

Φ = Eφ ∃ω s.t. ω0 = x and ω � φ 71

Φ = Aφ ∀(ω s.t. ω0 = x) : ω � φ 71

Φ = P./p(φ) 7 Px({ω : ω � φ}) ./ p
Φ = S./p(Φ) 7 limk→∞ Px({ω : xωk � Φ}) ./ p 2

path properties:
ω ∈ Ω � φ iff

language CTL PCTL CSL
φ = X xω1 � Φ 7

φ = X I 7 xω1 � Φ and τω|ω| ∈ I
φ = ΦUΦ′ ∃k ∈ N s.t. ∀j < k : xωj � Φ and xωk � Φ′

φ = ΦU IΦ′ 7

∃k ∈ I s.t. ∃k ∈ N s.t.
∀j < k : ∀j < k :

xωj � Φ and xωj � Φ and
xωk � Φ′ xωk � Φ′ and τω|ω| ∈ I

Table 1.1: Summary of the languages CTL, PCTL and CSL.
1 Some CTL-formulae do not have an equivalent in PCTL. E.g., A (♦Φ) has no equiva-
lent: the only obvious candidate, P≥1(♦Φ), is not equivalent as there may exist infinite
paths that do not satisfy φ, yet which occur with probability 0.
2 Originally, S./p(Φ) was not in PCTL [48]. However, its meaning also makes sense
in DTMCs and model checking tools such as PRISM allow this expression in PCTL. In
fact, for CTMCs, for which the operator was originally proposed, the verification of this
formula is often done by reducing the CTMC to its uniformised DTMC [9].

more extensive treatment of basic Petri nets see, e.g., [79]. We define an SPN to
be (P, T, Pre, Post,G,~λ), where

• P = {1, 2, . . . , |P |} denotes the set of places,

• T = {t1, . . . , t|T |} denotes the set of transitions,

• Pre : P×T → N and Post : P×T → N are the pre- and post- incidence functions
(as we will explain later).3

• G denotes the set of guards.

3We use N = {0, 1, 2, . . .}.

1.1 Model Checking 9

• ~λ = (λ1, . . . , λ|T |) denotes the rate functions, where λi : N|P | → R+ represents
the rate at which transition ti fires as a function of the current marking (which
is in N|P |).

Let Xi(n) be the number of tokens in place i after the nth time a transition is fired,
n ∈ N. Let ~X(n) = (X1(n), . . . , X|P |(n)) be the marking (or state) of the SPN at
time n. The state space X = N|P | is now the set of all possible markings; since X is
now a set of vectors, we will from now on write states as ~x = (x1, . . . , x|P |) instead
of x. We let transition ti have exponential rate λi(~x) with ~x ∈ X . The rate λi(~x(n))
determines the relative likelihood of the transition to fire at step n (if it is enabled).

When transition t fires, the marking changes as follows: Pre(p, t) tokens are
removed from place p while Post(p′, t) tokens are added to place p′. A transition
cannot fire if this would result in a negative number of tokens in a place, nor can it
fire when one of its guards is not enabled (as discussed below). The guards can be
described in terms of constraints, a concept that we will use extensively in Chapter 7.
A constraint c = (~α, β, ./) is an element of Z|P | × Z × {≤,≥},4 and we say that
marking ~x satisfies constraint c if ~α T~x ./ β. A guard g is then a 4-tuple (p, t, β, ./)
that imposes upon a transition t the necessary condition that it can only fire in ~x(n)
if the number of tokens in place p satisfies the inequality xp(n) ./ β. Letting

1i(~x(n)) =

{
1 if ∀(p, ti, β, ./) ∈ G : xp(n) ./ β,
0 otherwise, (1.1)

we say that transition ti is enabled at time n if 1i(~x(n)) = 1.5 If there are no
guards g ∈ G such that g = (·, t, ·, ·) then the transition t is always enabled as long as
firing t does not result in a negative number of tokens in some place. Let the total
incidence vector ~ui = (ui1, . . . , ui|P |) of transition ti be the vector that describes the
effect of firing ti on the marking. It is defined by uij = Post(j, i)− Pre(j, i), hence
the names pre- and post-incidence functions. Then the marking process ~X(n) is a
DTMC that is uniquely characterised by the probability measure

P(~x(n)→ ~x(n+ 1)) = P
(
~X(n+ 1) = ~x(n+ 1)

∣∣∣ ~X(n) = ~x(n)
)

=

∑
i∈I λi(~x(n))1i(~x(n))∑|T |
j=1 λj(~x(n))1j(~x(n))

,
(1.2)

where I = {i ∈ N : ti ∈ T, ~x(n+ 1) = ~x(n) + ~ui}. We will often use the short-hand
notation p~x(j) , P(~x→ ~x+ ~uj). An example of an SPN can be found in Figure 7.1.

To construct a CTMC using an SPN, we use P of (1.2) for the transition probabil-
ities and the denominator in (1.2) as the exit rate in state ~x(n), i.e.,

η(~x(n)) =

|T |∑
j=1

λj(~x(n))1j(~x(n)).

4We restrict ourselves to integer-valued constraints because this is necessary for our analysis in Chap-
ter 7.

5Note that guards are only allowed to depend on the number of tokens in a single place, e.g., a guard
of the form x1 + x2 ≤ 3 is not allowed.

10 1. INTRODUCTION AND PRELIMINARIES

1.1.4 Algorithms for Probabilistic Model Checking
The algorithms for probabilistic model checking can be divided into two categories:
numerical and statistical techniques. The numerical algorithms for S./p(Φ) (about the
steady-state/limiting probability of being in Φ-states) and P./p(ΦUΦ′) (about the
probability of visiting a Φ′-state before a ¬Φ-state) can be expressed using a matrix
equation involving P or another matrix of a similar size. In model checking tools
such as PRISM, this matrix equation is then solved using iterative techniques such
as the Jacobi and Gauss-Seidel methods [68]. For P./p(ΦU IΦ′) (about the proba-
bility of visiting a Φ′-state before a ¬Φ-state within the time interval I), the prob-
abilities of interest are computed using simple matrix multiplications for DTMCs
or uniformisation [9] for CTMCs.6 Numerical algorithms have several well-known
drawbacks.

a. The state space explosion problem: the complexity of all previously men-
tioned algorithms depends on the size7 of the probability transition matrix
P . When the state space is large or even infinite, a naive implementation of
these algorithms may be computationally infeasible. There is a vast literature
on ways to mitigate this problem; a lot of focus has been on state space re-
duction techniques such as partial order reduction [24] or confluence [13], or
symbolic representations of the state space [77]. Furthermore, in some cases
when the state space is infinite [95] more refined techniques exist which may
lead to a solvable problem. However, many of these more refined techniques
require forms of structure in the model that are not always present.

b. Stiffness in CTMC model checking: when there are states in the CTMC that
have a very high exit rate, the uniformisation rate that is used to turn the
CTMC into a DTMC is also large. This means that the other states will be
given the same exit rate combined with a very large self-loop probability. This
has an adverse effect on the performance of the techniques used to analyse the
resulting DTMC [15].

c. The inability to generalise these techniques to adjacent settings. For example,
when rewards are added to the model (the model is then a Markov Reward
Model and the associated property specification language is CSRL [8]), more
refined techniques are required that suffer even worse when the size of the
state space increases — for models with over 5000 states [26] these techniques
are currently out of scope. Also, when intertransition times are allowed to
have probability distributions other than the exponential (which is done in,
e.g., some models of probabilistic timed automata [29]), techniques designed
for Markov chains fail to be applicable altogether.

Still, when a numerical model checking algorithm terminates one knows with cer-
tainty (or in some cases up to a bounded error) that the property of interest is sat-

6Model checking the bounded and unbounded X -operator of PCTL and CSL is largely trivial and
will not be discussed in this thesis.

7More specifically: on the number of non-zeroes in P .

1.1 Model Checking 11

isfied or not. For statistical model checking, this certainty is forfeit. A random set
of paths is generated using discrete-event simulation, and these paths are used to
make a statement about whether a property is satisfied with a statistically moti-
vated level of confidence. The gain is that some of the problems shared by the
numerical algorithms are alleviated. In fact, SMC based on standard (Monte Carlo)
simulation has none of the three problems stated above. The simulation can be
carried out on a higher level than that of the Markov chain, so we do not need to
explicitly generate the state space. Furthermore, intertransition times are drawn
with knowledge of only the current state so stiffness is also no longer a problem.
Finally, Monte Carlo (MC) simulation is trivially extended from Markov chains to
Markov reward models or even to non-Markovian transition systems as long as we
can draw samples from the transition time distributions (see Chapter 8 of [70]).

However, SMC has well-known challenges of its own.

1. Convergence is slow. To make a simulation result ten times more accurate,
the sample size must be increased hundredfold (a quadratic blow-up). This
compares very poorly to numerical methods, for which it roughly holds that
a fixed number of steps is needed for each digit known with certainty (a log-
arithmic blow-up). This is particularly a problem for rare events: when the
probability of (not) satisfying the relevant property is very small, the accuracy
must be high which means that a very large number of runs must be drawn
to obtain a reasonable estimate.

2. Choosing the sample size of the simulation experiment is non-trivial. To es-
timate a small probability a large sample size is needed for the estimate to
be accurate. However, since the probability is not known beforehand, it is a
priori unclear how large the sample size must be.

3. Dependence on the initial state: while numerical techniques check property
satisfaction for the entire state space, statistical techniques require a fixed ini-
tial state, which may limit applicability and which means that the verification
of nested formulae is no longer possible (although for nested formulae com-
binations of numerical and statistical techniques may be possible [114]). E.g.,
to check a property such as S./p(Φ) with Φ non-trivial one needs to know for
each state in X whether this state satisfies Φ, while statistical techniques can
only check whether Φ holds for a single state at a time.

4. Termination at the simulation level: termination of the discrete-event simula-
tion is not guaranteed for model checking P(ΦUΦ′); the simulation termina-
tion criterion here is that a state that satisfies ¬Φ or Φ′ is reached, but if the
Markov chain is not strongly connected or if it has a state space of infinite size
this may happen with probability less than 1.

Throughout this thesis we distinguish between simulation and statistical model
checking: by the former we refer to the drawing of individual paths, by the latter
we refer to the analysis of a large sample of paths. The four challenges mentioned

12 1. INTRODUCTION AND PRELIMINARIES

above touch one or both of these aspects. For example, Challenge 2 is purely an
SMC challenge and Challenge 4 is purely a simulation challenge. However, Chal-
lenge 1 touches both; the low probability of observing the relevant behaviour im-
pacts the analysis of the sample but our analysis will focus on changing transition-
related probabilities on the simulation level.

In Chapter 2 we discuss the foundations of statistical model checking in more
detail and propose new techniques related to Challenge 2. The rest of the chapters
focus on Challenge 1 (rare events). The rest of this section is about the common
framework underneath these chapters. We will not work towards solutions for
Challenges 3 and 4 in this thesis. Particularly, we avoid Challenge 4 by assuming
that with probability 1, the simulation terminates in a finite amount of time and
we can check whether the property of interest holds on the resulting path within a
finite amount of time (see also Assumption 2 of Section 2.1.1).

1.1.5 Model Assumptions

Because statistical model checking depends strongly on an initial state and cannot
trivially use nested operators (see Challenge 3 of Section 1.1.4), we can restrict our
model setting in a way that allows for easier notation. Let ~x0 be the initial state.
From now on, we assume that the model has only two atomic propositions: a and b.
The states that satisfy a are called the tabu states and the states that satisfy b are
called the goal states. All states in ~x ∈ X are assumed to have L(~x) ∈ {∅, {a}, {b}};
if, due to the high-level specification it turns out that a state satisfies both a and b
then b gets precedence. In all settings except for the one of Chapter 7, we can assume
that all a-states have been merged into a single state xa and that all b-states have
been merged together into a single state xb.

The path formulae that we are interested in are ψ , ¬aU b and ψτ̄ , ¬aU Ib.
Many interesting performance measures can be expressed using these probabili-
ties. E.g., the time-bounded unreliability can be expressed directly using ψτ̄ , while
the Mean Time to Failure (MTTF) and even the steady-state unavailability can be
rewritten into expressions in which ψ is the only quantity that is difficult to esti-
mate. For ψτ̄ = ¬aU Ib, we will typically assume that I = [0, τ̄) (i.e., we must reach
the b-states before time τ̄), although in Chapter 4 we will also briefly consider the
case I = [τ̄ ,∞).

1.2 Monte Carlo Simulation

So far, we have focused on DTMC and CTMC models and on how to specify prop-
erties of interest in the languages associated with these models (PCTL and CSL
respectively). PCTL and CSL both make assertions about probabilities related to
states, and in this section we discuss how to estimate these probabilities using stan-
dard (Monte Carlo) simulation. Section 1.2.1 is about how to use sample paths to
estimate both path and steady-state probabilities. In Section 1.2.2, we discuss the
generation of these sample paths.

1.2 Monte Carlo Simulation 13

1.2.1 Estimating path and steady-state probabilities
We first focus on estimating probabilities of the form P(φ), where φ is a path for-
mula. The probability that this property is satisfied is given by πφ , P(φ) = E(1φ),
where 1φ(ω) denotes the indicator function which equals 1 if ω satisfies φ and 0 oth-
erwise. For each sample run we can evaluate whether φ was satisfied on that run.
So, after having sampled a series of runs {ω1, . . . , ωN}we can estimate πφ using

π̂φ =
1

N

N∑
i=1

1φ(ωi). (1.3)

Let σ̂ be the sample standard deviation of our series of runs, given by

σ̂ =

√√√√ 1

N − 1

N∑
i=1

(1φ(ωi)− π̂φ)
2
.

The 95%-confidence interval for this estimate is then given by (see [70], §4.5)[
π̂φ − 1.96

σ̂√
N

, π̂φ + 1.96
σ̂√
N

]
. (1.4)

Estimating vb , limk→∞ Px({ω : xωk � b}) (the steady-state/limiting probability of
being in a b-state) using simulation is a little bit more involved. Since we are inter-
ested in the behaviour of the system after a large amount of time in the system has
passed, the initialisation of the system is non-trivial. If the system is ergodic (which
we typically assume to be the case), we can avoid having to ‘warm-up’ the simula-
tion before it reaches approximate equilibrium by applying a renewal argument. In
this case, we use the atomic proposition a to define a single state xa as the regener-
ation state. We then partition the behaviour of the system as time progresses into
disjoint busy cycles; a busy cycle starts and ends when we enter state xa. Let Z be
the amount of time during which the system is in a b-state during a busy cycle and
let D be the duration of a busy cycle. Then vb = E(Z)/E(D). The ratio estimator v̂b
is given by

v̂b =
ẑ

d̂
, (1.5)

where ẑ and d̂ are the Monte Carlo estimates for E(Z) and E(D) respectively. This
estimator is biased, but strongly consistent (i.e., v̂b → vb as the number of samples
goes to infinity; see [70], §9.5.3). We generate different runs for the estimates ẑ and d̂
to avoid dependence.8 The 95%-confidence interval (see [70], §9.5.3) is then given
by [

v̂b − 1.96
σ̂v

d̂
√
N

, v̂b + 1.96
σ̂v

d̂
√
N

]
, (1.6)

8This becomes even more necessary when we use importance sampling because techniques that focus
on rare events would lead to a large variance of d̂ (more details are given in Section 4.1.3).

14 1. INTRODUCTION AND PRELIMINARIES

where σ̂2
v = σ̂2

z + σ̂2
dv̂

2 and σ̂2
z and σ̂2

d are the sample variances of sequences contain-
ing the V ’s and D’s respectively.

Although these estimation procedures work in many cases, the downside is that
when the probability that we need to estimate is small the number of runs N that
we need in (1.3) or (1.5) is enormous. Finding a solution to this problem will be the
focus of Section 1.3.

1.2.2 Path Generation

We discuss path generation only at the level of the Petri net.9 Furthermore, we only
discuss the sampling of continuous-time paths, as a discrete-time path is simply a
continuous-time path without the transition times.

Let Ω be the set of all timed paths as introduced in Section 1.1.2. We generate
samples from Ω as follows: we start the run at time τ0 = 0 in state ~x0. We then
consecutively determine which transition is fired and how long it takes until this
happens. Assume that we have so far observed a path ω = (~xω0 , τ

ω
1 , ~x

ω
1 , . . . , τ

ω
k , ~x

ω
k).

We then determine the next state Xω
k+1 by drawing directly from the probability

distribution (1.2). The sojourn time in ~xωk , given by T ω
k+1 − τωk , is then determined

independently by drawing from the distribution with probability density function

f~xω
k

(δ) = η(~xωk)e−η(~xω
k)δ, (1.7)

using the inversion method [70]. We continue until we can terminate, i.e., satisfy a
condition that depends on the property whose validity we seek to evaluate.

We will not further discuss non-Markovian systems in this thesis, but for non-
Markovian systems the techniques of Chapter 2 may still be applied. In this setting,
one often uses the modelling language of Generalised Semi-Markov Processes (GSMPs,
see [76] or [42]), a formalism which can be seen as an SPN with non-Markovian
probability measures for transitions and sojourn times. The standard simulation
procedure is to keep an event list (li)i=1,...,|T |, with |T | the number of transitions
in the GSMP. The ith element in the event list corresponds to the next time point
at which transition ti is fired; the next state change is the one corresponding to
the firing of the transition tj with j = arg mini=1,...,|T | {li}. One can draw non-
Markovian transition times by using techniques such as inversion or accept-reject
schemes [70].

1.3 Principles of Importance Sampling

This section will be about our rare event simulation method of choice: Importance
Sampling (IS) [50]. If done correctly, IS yields an estimator with lower variance than

9If a Petri net level description is not available (as may be the case for the models of Chapter 5), one
can view the Markov chain as a Petri net that contains a place for each state, which has transitions for
each state transition and which at all times contains only one token, namely in the place corresponding
to the current state.

1.3 Principles of Importance Sampling 15

standard MC in situations involving rare events. We first give an intuitive descrip-
tion of IS in Section 1.3.1. We then describe IS formally in Section 1.3.2. In Sec-
tion 1.3.3 we discuss the variance of IS-estimators and the important properties of
Bounded Relative Error (BRE) and Vanishing Relative Error (VRE). In Section 1.3.4
we describe Balanced Failure Biasing (BFB) and forcing, which are commonly used
IS-techniques for the kind of reliability models that are typically analysed using
model checking. In Section 1.3.5 we discuss the technique of Zero Variance Ap-
proximation (ZVA) which we use as the basis for the techniques proposed in the
rest of the thesis.

1.3.1 Intuitive Description

Assume that we want to estimate the probability πφ of observing φ, and that πφ is
very small. Using standard simulation, we randomly draw zeroes and ones such
that the fraction of ones is expected to be πφ (see (1.3)). Suppose we now somehow
make the probability of drawing a non-zero twice as large. Then, if we multiply the
value 1φ(ωi) of the ith run in (1.3) by 1

2 , we obtain an estimator that is unbiased and
which has a lower variance than the standard estimator. Now suppose we already
know πφ and make drawing a non-zero exactly π−1

φ times as likely. Hence, we draw
a non-zero with probability one and multiply each 1φ(ωi) by the precise probability
that we wish to estimate, resulting in an estimator with zero variance (this will be the
basis behind the approach of Section 1.3.5).

Hence, we want to apply this principle also in the systems that we consider: to
make the drawing of paths that satisfy φ more likely. Unfortunately, the systems
we study are far too complex to ‘just’ multiply the probability of drawing a path
that satisfies φ by some number and multiply the resulting estimate by a constant
weighting factor. There are many different paths that satisfy φ, and we change the
probability of drawing each path by manipulating its individual transition proba-
bilities. This cannot be done naively: if we change a transition probability and let
the system remain a Markov chain, then paths that take this transition a different
number of times will have different weighting factors. Hence, we need to guarantee
that the way we tweak transition probabilities and sojourn time densities does not
lead to unexpected results. The basic way to do this in complex stochastic systems
will be discussed below.

1.3.2 Basic Setup of Importance Sampling

We first consider the problem of estimating P(ψ): the probability of hitting a b-state
before hitting an a-state. If this probability is low, then there is a strong drift away
from b, possibly towards a. The idea is then to increase the probability of taking
(firing) transitions that take the system closer to b. This is done using a new proba-
bility distribution Q for the simulation, which we call the simulation distribution (this
procedure is known as a change of measure), such that the transitions toward the b-
states are much more likely than under the old distribution (1.2). We compensate for

16 1. INTRODUCTION AND PRELIMINARIES

this overestimation by weighting each outcome with the ratio of P and Q — like the
factor 1

2 in the example in Section 1.3.1.
Every time a transition is sampled using the new density this weighting factor

needs to be considered. The final weighting factor LQ of a run ω = (xω0 , x
ω
1 , . . . , x

ω
|ω|)

is called the likelihood ratio and is simply computed as the product of the individual
ratios in the run, i.e.,

LQ(ω) =

|ω|∏
i=1

P(xωi−1 → xωi)

Q(xωi−1 → xωi)
. (1.8)

Our new estimator — replacing (1.3) — then becomes

π̂φ =
1

N

N∑
i=1

LQ(ωi) · 1ψ(ωi). (1.9)

It is easy to prove that this estimator is unbiased for any new distribution that as-
signs positive probability to transitions that have positive probability under the old
distribution (by the Radon-Nikodym Theorem, see Chapter 7 of [17]).

We do not need to restrict ourselves to changing the transition probabilities. Note
that for ψτ̄ = ¬aU [0,τ̄]b, i.e., the probability of visiting a Φ′-state before a ¬Φ-state
within τ̄ time units, the system failure probability can also be small because the
time interval [0, τ̄] is too short for a sufficient number of transitions to occur. To
remedy this, we can replace the sojourn time density f of (1.7) by a new density g
with a higher transition rate. If we also account for the ratios f/g in the likelihood
ratio LQ then our estimator remains unbiased and, if done correctly, has an even
lower variance. We will use this in Chapters 4 and 5.

1.3.3 Variance of Importance Sampling Estimators
As mentioned in the introduction of this section, we apply IS to obtain an estima-
tor with lower variance than the standard MC-estimator. Since an IS-method is
uniquely defined by its associated simulation measure Q, we measure the perfor-
mance of an IS-method by the variance of π̂φ under Q, given by

VarQ(π̂φ) = E
(
L2
Q · 1ψ

)
− π̂2

φ.

Using Q = P, we obtain the variance of the MC-estimator: π̂φ(1− π̂φ).
A particularly interesting efficiency metric for an estimator is its relative error,

given by √
VarQ(π̂φ)

π̂φ

The relative error of the MC-estimator is given by
√

(1− π̂φ)/π̂φ, which goes to in-
finity when π̂φ goes to zero. When the relative error of an estimator does not go
to infinity when π̂φ goes to zero, we say that our estimator satisfies the desirable
property of Bounded Relative Error (BRE, [71]). When it goes to zero, we say that

1.3 Principles of Importance Sampling 17

it satisfies the even more desirable property of Vanishing Relative Error (VRE). The
BRE-property will be of particular interest in Chapter 5, although it will be men-
tioned in other parts of the thesis as well.

1.3.4 Failure Biasing and Forcing

One of the classical importance sampling methodologies is Balanced Failure Biasing
(BFB, [108]); throughout this thesis it will be used as a means of comparison. The
main idea underlying BFB is that all transitions in the SPN can be divided into two
categories: transitions that bring the system closer to the goal state(s) and transi-
tions that take the system away from the goal state(s). This is a natural assumption
in models of highly reliable multicomponent systems, where the transitions are ei-
ther component failures or repairs and the goal states are states in which certain
(configurations of) components are broken. The probability of interest in this set-
ting is small because failure transitions are much less likely than repair transitions.
The idea is then to choose a number c ∈ (0, 1) such that the total probability of a
failure transition is always c. Specifically, if in a state ~x ∈ X it holds that m > 0
failure transitions and n > 0 repair transitions are enabled, then BFB uses the new
measure Q given by

q~x(j) =

c

m
if tj is a failure transition,

1− c
n

if tj is a repair transition.
(1.10)

A typical choice for c is 1
2 .

In a highly reliable system, it might also be that P(ψτ̄) = ¬aU [0,τ̄]b is small
because failures occur slowly, i.e., by the time the system has failed the time bound τ̄
has long been passed. In highly reliable systems, this is usually because it takes a
long time until the next failure occurs when all components all working. The idea is
then to apply forcing (see [80] or [81]): we draw transition times conditional on their
occurrence before the time bound τ̄ .10 In particular, if we are in state ~x at time τ we
draw from the alternative density

g~x,τ̄−τ (δ) =
η(~x)e−η(~x)δ

1− e−η(~x)(τ̄−τ)
, δ ∈ [0, τ̄ − τ]. (1.11)

1.3.5 Zero Variance

Consider the following ideal situation: for every state ~x and for all time points
τ ∈ [0, τ̄] we already know the probability πφ(~x, τ) of seeing ψτ̄ , i.e., seeing a b-state
before a a-state within τ̄ − τ time units. Let ~x + uj be the new state that we obtain

10This is not to be confused with conditioning or discrete time conversion [41, 45] in which we numerically
compute the conditional probability P(ψτ̄ |ω), where ω is a timed path in which transition times have
not been drawn for some or all of the states.

18 1. INTRODUCTION AND PRELIMINARIES

if transition j is chosen when we are in state ~x. Then we can introduce a new
simultaneous density of the transition tj ∈ T and sojourn time δ ∈ [0, t− τ̄], namely

q~x(j, δ) =
p~x(j) · f~x(δ) · πφ(~x+ uj , τ + δ)∫ τ̄−τ

0

∑|T |
j′=1 p~x(j) · f~x(δ) · πφ(~x+ uj′ , τ + δ′)dδ′

. (1.12)

In the timeless setting, (1.12) simplifies to

q~x(j) =
p~x(j) · πφ(~x+ uj)∑|T |

j′=1 p~x(j′) · πφ(~x+ uj′)
, (1.13)

This new simulation density is proven to yield an estimator with zero-variance in
[31]. Of course, we do not explicitly know πφ; if we would know, we would not
need to simulate at all. However, we might be able to come up with an approxima-
tion for πφ. We denote this approximation by w. Then, we replace the function πφ
in (1.12) by w. This approach is called Zero Variance Approximation (ZVA). If the sim-
ulation distribution associated with the approximation w is good enough then we
have succeeded in overcoming the main problem facing standard Monte Carlo sim-
ulation of rare events. Chapters 4, 5 and 7 will all be about finding approximations
that lead to well-performing simulation measures.

1.4 Contributions of this Thesis

The contributions of this thesis are as follows.

In Chapter 2, we present an overview of the known hypothesis tests from the statis-
tical model checking literature and cast them into a single framework. We demon-
strate that the performance of these known methods is very sensitive to parameters
that must be set a priori. We introduce two new methods for which the probability
of drawing the right conclusion can be bounded from below, arbitrarily close to 1,
regardless of how little is known about the system beforehand. We conduct a case
study in which we compare the correctness and the efficiency of the two new meth-
ods and the earlier methods; the results confirm the robustness of the new methods
with respect to their parameters.

The contents of Chapter 2 are published in the following paper, of which a jour-
nal version is pending.

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and B.R. Haverkort, “On Hy-
pothesis Testing for Statistical Model Checking,” SMC Workshop 2013.

In Chapters 3 and 4, we consider (parallel networks of) birth-death processes, and
discern several asymptotic regimes that all lead to different typical behaviour to
reach the rare event. We zoom in on the regime where the probability of observing a
large population is small due to the high speed of the deaths, and present a method
based on importance sampling to speed up the simulation process in this case. We

1.4 Contributions of this Thesis 19

conduct a case study based on a well-known literature benchmark involving system
failure in a multicomponent system (in this case, births corresponds to component
failures and deaths to repairs).

The contents of Chapters 3 and 4 have been published in the following papers:

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and B.R. Haverkort, “Rare event
simulation for highly dependable systems with fast repairs,” in Proceedings of
the 7th International Conference on the Quantitative Evaluation of Systems (QEST).
IEEE, 2010, pp. 251–260.

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and B.R. Haverkort, “Rare event
simulation for highly dependable systems with fast repairs,” Performance Eval-
uation, vol. 69, no. 7, pp. 336–355, 2012.

• D. Reijsbergen, P.T. de Boer, and W. Scheinhardt, “Transient behaviour in
highly dependable Markovian systems: New regimes, multiple paths,” RESIM
2010.

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and B.R. Haverkort, “Fast simu-
lation for slow paths in Markov models,” RESIM 2012.

In Chapter 5, we present an algorithm for importance sampling in general Markov
chains that is guaranteed to produce an estimator that meets the conditions pre-
sented in [73] [72] for vanishing relative error. Although our method works on the
level of the state space, it does not suffer from high-probability cycles in the model
and it can handle infinite state spaces under certain conditions.

In Chapter 6 we demonstrate how the procedure that is used to obtain the change
of measure in Chapter 5 can be executed a second time to achieve even further vari-
ance reduction, using ideas from [59], and also apply this technique to the method
of failure biasing, with which we compare our results.

The contents of Chapters 5 and 6 have been published in the following paper (a
journal version is pending):

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and S. Juneja, “Some advances
in importance sampling of reliability models based on zero variance approxi-
mation,” RESIM 2012.

In Chapter 7 we present a formal algorithm that obtains the information required
to construct a good change of measure from a high-level SPN-description, without
generating the full state space. Essentially, the algorithm of this chapter reduces the
state space of the model into a (much smaller) graph in which each node represents
a set of states for which the most likely path to failure has the same form. We
empirically demonstrate the efficiency of the method with two case studies.

The contents of Chapter 7 have been published in the following paper (a journal
version is pending):

20 1. INTRODUCTION AND PRELIMINARIES

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and B.R. Haverkort, “Automated
rare event simulation for stochastic petri nets,” in Proceedings of the 10th Inter-
national Conference on the Quantitative Evaluation of Systems (QEST), 2013.

Chapter 8 concludes the thesis.

CHAPTER 2

Sequential Hypothesis Testing

As mentioned in the introduction, the main theme of this thesis is to validate a
formal property in a probabilistic system using a sample of simulation runs as ef-
ficiently as possible. Typically, these formal properties are (state) properties which
are specified in terms of a bound on some probability of interest (see Section 1.1.2);
we denote this probability of interest by π. The exact way in which the simula-
tion runs are then interpreted depends on the interests of the investigator. First of
all, she could be interested in a quantitative statement, consisting of an estimate of
the performance measure with a corresponding confidence interval (e.g., with 95%
confidence, the probability of deadlock before termination is 10% with a 2% mar-
gin of error). Secondly, she could be interested in a qualitative statement about a
performance property, specified as a hypothesis that asserts that the true probabil-
ity π is larger (or smaller) than some boundary value π0 (e.g., with 95% confidence,
the probability of deadlock before termination is greater than 5%). While Chap-
ters 4 to 7 are primarily concerned with quantitative statements in the context of
rare events, the focus of this chapter will be on qualitative statements in general.

The question of how to perform a qualitative test for statistical model check-
ing in a methodologically sound way has been the subject of debate for the past
few years. Seminal in the field of establishing a formal framework was the work
of Younes [113, 115, 116], who used a sequential sampling scheme introduced by
Wald [111]. Here ‘sequential’ means that after generating each sample it is checked
whether we can conclude the test. While Wald’s test was originally not suited for
probabilistic model checking problems, Younes showed that if the true probabil-
ity π was assumed not to lie inside a (small) indifference region [π0−δ, π0 +δ], Wald’s
test can be recast into the statistical model checking framework.

The most common alternatives to Wald’s test are those based on a confidence
interval (CI) constructed using a fixed number of samples. In order to determine the
fixed sample size, the investigator can use a guess for π, on which she bases (through
approximate normality based on the Central Limit Theorem (CLT) or a bound such
as the Chernoff-Hoeffding bound) a guess for the number of samples needed.

Given this selection of tests, it is then up to the investigator to decide which test
she finds the most appealing. There are three main criteria by which to judge the
appeal of these tests.

1. Correctness, which asserts that the probability of rejecting a valid hypothesis

22 2. SEQUENTIAL HYPOTHESIS TESTING

is guaranteed to be smaller than 1 minus the given confidence level,

2. the power, which is the probability of rejecting an invalid hypothesis,11 and

3. the efficiency, the average number of samples needed before a conclusion can
be drawn.

The guess underlying the aforementioned fixed sample size test determines the
power of the test but not its correctness. Meanwhile, the correctness of Wald’s se-
quential test depends on the indifference level δ while its power does not. In some
settings, the investigator may indicate beforehand that she no longer cares about
the validity of the test when the true parameter π is close enough to the bound π0.
In such a situation, the choice of indifference level δ emerges naturally. If this is
not the case, the investigator will generally not have a clear idea about its value,
which may result in a choice of indifference level δ that is far too small. This can
be detrimental to the efficiency of the test. For Wald’s sequential test, it holds that
if an indifference level is made ten times smaller, it will on average take about ten
times longer to draw a conclusion. On the other hand, if the indifference level is
chosen too large, the outcome of the test may get arbitrarily close to flipping a sin-
gle coin. The problem here is that when a conclusion is drawn, the investigator
cannot decide, based on the outcome of the test, whether it was carried out properly
or whether a slightly biased coin was flipped. The investigator can only accept the
outcome, having good faith that her assumptions were satisfied.

Of course, all tests mentioned so far have proven their merit in recent years.
However, we argue in this chapter that when the investigator wants strong guaran-
tees in terms of correctness and power that do not depend on parameters, her de-
mands are not met by the tests currently available in the statistical model checking
literature. As such, we introduce two sequential tests for statistical model checking,
one based on our own analysis and one based on [28]. Only the efficiency (and not
the correctness or power) of these two tests depends on a guess. The second test
is very insensitive to the guess, and is very well suited for situations in which the
investigator really has no idea about the true probability π, at least not up to two
orders of magnitude. The first test is superior when the guess is actually close to
the true probability π, but the investigator does not want to commit herself to an
indifference level — if the guess is far off, then this test will simply require an enor-
mous amount of samples, whereas Wald’s test will in this case accept the wrong
hypothesis with high probability without giving any indication that the test went
wrong.

The contributions of this chapter are the following. We present a single frame-
work that allows the tests discussed in this thesis to be compared in a clear manner
in Section 2.1. In Section 2.2, we present an overview of the main tests proposed
so far for statistical model checking, using the framework of Section 2.1. We con-
struct a new test for statistical model checking based on original analysis, inspired

11This will be the definition for the power that we use in this thesis. In [28], it is defined as the
probability of rejecting the null hypothesis (see Section 2.1) when it is invalid.

2.1 General Framework 23

by Ross’ Generalized Azuma Inequality, and introduce one of the tests of [28] to
statistical model checking in Section 2.3. We compare the performance of all these
tests empirically in Section 2.4. We discuss the possibility of a sequential test for
model checking steady-state properties based on the analysis of the two new tests
in Section 2.5. Section 2.6 concludes the chapter.

2.1 General Framework

In this section we will discuss the framework that we will use to compare the tests
described in Sections 2.2 and 2.3. We begin in Section 2.1.1 with some notes on
the generality of the framework and its description. In Section 2.1.2 we discuss
elementary statistical methodology in order to fix terminology and notation, before
we move on the description of the three hypotheses and the corresponding testing
procedure used in this chapter.

2.1.1 Assumptions

In this section we focus on verifying the property P>π0
(φ), which asserts that the

probability of observing a path satisfying φ from the initial state is greater than π0.12

Consequently, the simulation procedure under consideration consists of drawing
sample paths and verifying whether φ holds on each of these path. Steady-state
properties will be discussed in Section 2.5.

While we focused on Markovian systems and the associated logics PCTL and
CSL in Chapter 1, the statistical approach discussed in this chapter is more general
— the only requirement on the system model is that we can randomly generate
execution paths for which we can check whether some path property φ is satisfied.
This can be rewritten into the following requirements:

1. we can generate execution paths from the model, according to a well-defined
probability measure on the execution paths;

2. with probability 1, these paths are generated in a finite amount of time and
we can test, also in a finite amount of time, whether the property φ holds on a
path;

3. we do not encounter nondeterminism [10], or we at least have a well-defined
policy or scheduler to resolve it.

In principle, we do not need any additional information about the system model
as long as we can obtain execution paths that satisfy these three requirements. We
commonly call a system about which additional information is indeed not available

12By treating P>p0 (φ), we treat, without loss of generality, all possible variations of the probabilistic
path operator P , because, using statistical model checking, we cannot differentiate between P>p0 (φ)
and P≥p0

(φ) (more on that later in Section 2.1), and because P<p0 (φ) and P≥1−p0
(¬φ) are equivalent.

24 2. SEQUENTIAL HYPOTHESIS TESTING

a black-box system [106], and the methodology described in Section 2.1.2 already
works for these systems.

In practice, a system model is often available that allows us to write a computer
program that can generate execution paths, so that the system is not completely
black-box. Popular modelling formalisms include Generalized Semi-Markov Pro-
cesses (GSPMs, [42, 76]) and stochastic (possibly non-Markovian) Petri nets [47]. Re-
quirements 2) and 3) will not be satisfied in all GSMPs or stochastic Petri nets, and
even if they are not, it might still be possible to apply a refined form of statistical
model checking (see, for example, [37], [107] or [112], in which 2) is not satisfied).
Judging whether requirements 2) and 3) are satisfied given a system model and
performance property is a field of study in itself. As this chapter is not about gener-
ating sample paths but about the interpretation of the results, we refer the interested
reader to the vast literature on stochastic simulation [40, 97], and from now on as-
sume that we draw samples from a black-box system in order to say something
about P>π0(φ).

In this chapter, we will not consider nested probabilistic operators. To read
about how nested operators are treated in other settings, see, e.g., Section 3.2 of
[107] or [114], in which a combined numerical/statistical procedure is proposed.

2.1.2 Statistical Framework
Let ωi be the execution path in the i-th sample, i = 1, . . . , N , and define

Xi , 1φ(ωi) =

{
1 if φ holds on ωi,
0 otherwise. (2.1)

Then Xi has a Bernoulli distribution with parameter πφ, where πφ denotes the true
probability that φ is satisfied. Writing π for πφ, this means that

P(Xi = x) =

{
π if x = 1,

1− π if x = 0.

The total sample ~X , (Xi)i=1,...,N will be used to perform a statistical test. To do
this, we combine all relevant information from the individual sample paths into a
function that maps {0, 1}N onto R, called the test statistic. We use the test statistic
to falsify claims about π, called hypotheses. If we can show that, under the condition
that some hypothesis H is true, the probability that the observed outcome of the
test statistic occurs is smaller than some given α ∈ (0, 1

2), then we reject H . The
parameter α is called the significance, and 1− α is called the confidence of the test. A
hypothesis that can be rejected this way is called a null hypothesis, while a hypothesis
that can be accepted through the rejection of a null hypothesis is called an alternative
hypothesis. Rejecting a valid null hypothesis is called an error of the first type (or a false
positive). Not accepting a valid alternative hypothesis is called an error of the second
type (or a false negative).

Since we are interested in checking whether P>π0
(φ) holds, there are two rele-

vant claims: π > π0 and π ≤ π0. There is no clear distinction between a null and

2.1 General Framework 25

alternative hypothesis, as there is no asymmetry in our desire to reject any one of
the two claims. Accordingly, we specify two alternative hypotheses, each of which
we would like to accept if it were true:

H+1 : π > π0,
H−1 : π < π0.

(2.2)

Additionally, we have the null hypothesis

H0 : π = π0.

Note the null hypothesis cannot be shown to be correct, as its negation π 6= π0

cannot be disproved statistically. The reason is that no matter how many samples
we draw and no matter how much evidence we see for π = π0, there will always be
some small ε such that we cannot reject the claim that π = π0 + ε.

The procedure to test which of the alternative hypotheses is true is as follows:
after having drawn N samples, we let SN (~X) be the test statistic given by the sum
of X1 up to XN , and omit the argument ~X for brevity. We can then view the evolu-
tion of SN as the evolution of a discrete-time Markov chain on state space N, with
the number of drawn samples on the x-axis and the value of the test statistic on the
y-axis, where in each step we take a jump to the right or top-right (as can be seen in
Figure 2.1).

N

SN

Figure 2.1: Markov chain representation of a hypothesis test.

While we are drawing samples, the expected behaviour of the process SN is that it
drifts away from the x-axis. The true parameter π determines the speed of this drift.
Remember that our main interest is to test whether π − π0 is positive or negative.
Hence, we focus on the shifted test statistic

ZN , SN −Nπ0.

The speed at which ZN drifts away from the x-axis is completely determined by
π − π0. If ZN � 0 then this is strong evidence for H+1, while if ZN � 0 then this is
strong evidence for H−1.

26 2. SEQUENTIAL HYPOTHESIS TESTING

We then specify four test decision areas which are subsets of R2. Three of them
are critical, by which we mean that we draw a conclusion as soon as they are entered
by ZN . The first critical area U is the area such that as soon as ZN enters U , we
accept H+1. The second critical area L does the same for H−1. As soon as ZN
enters the critical area I, we stop the test without accepting any hypothesis. We
accordingly say that the test was inconclusive. All that is outside these three areas
makes up the non-critical area NC.

N

ZN= SN −Nπ0

U
I

L

NC

(a)

N

ZN

U

L

NC

(b)

Figure 2.2: Graphical representation of the test decision areas L, U , I and NC. Left:
fixed sample size test. Right: sequential test. Grey areas represent areas in which ZN
cannot go.

The tests that we consider in this chapter are completely determined by the shape
of these areas. In Figure 2.2, we display examples of these regions for both a typical
fixed sample size and a typical sequential test. Note that sequential tests in principle
do not have an area I, since we keep sampling until we draw a conclusion. In
practice, we might set a time-out parameter τ , letting all states that are to the right
of τ be part of I.

Given L, U and I, we want to bound the probability of entering them given that
a hypothesis is valid. Let Ai be the event that we accept Hi. Then we impose the
following two conditions on the two errors of the first type:

P(A+1 | ¬H+1) ≤ α1, (2.3)
P(A−1 | ¬H−1) ≤ α2, (2.4)

and we impose the following conditions on the two errors of the second type:

P(¬A+1 | H+1) ≤ β1, (2.5)
P(¬A−1 | H−1) ≤ β2. (2.6)

Throughout this chapter, we will choose α1 = α2 and β1 = β2. In principle, the
total probability of error of the first type should always be set to α , α1 + α2, since
underH0 both errors may occur. However, we assume thatH0 does not hold, as we
argued earlier in this section. So in this case, we can set α = α1 = α2 and achieve
the same level of confidence with a smaller sample size. Also when H0 : π = π0

is possible (as, e.g., in the case of a ‘simple’ underlying model and performance

2.2 Known Statistical Hypothesis Tests 27

property), the investigator can explicitly decide that she does not care about the
validity of the results when π equals or is very close to π0, so that it is justifiable for
her to say that the total probability of error is α1 = α2.

A test is called optimal if there does not exist a test with the same (or better) error
bounds that on average needs fewer samples to come to a conclusion. However,
the tests that we discuss in this chapter satisfy bounds on their error probabilities
that are fundamentally different from each other, so we do not further speak of
optimality. Discussing known tests will be the focus of Section 2.2, while discussing
the new tests will be the topic of Section 2.3.

2.2 Known Statistical Hypothesis Tests

In this section, we discuss the four tests most commonly found in model checking
tools and the literature. Each of them can be seen as a special case of the general
framework presented in Section 2.1. In Section 2.2.1 we discuss a test based on
the the (standard) binomial test for which we draw an a priori fixed number of
samples which we from now on will call the ‘Gauss’ test. In Section 2.2.2 we discuss
a sequential test, i.e., a test in which we check after each individual sample whether
a conclusion can be drawn, called the ‘Sequential Probability Ratio Test (SPRT)’ — this
is the test of Younes and Wald as we discussed in the introduction to this chapter.
In Section 2.2.3, we discuss a fixed sample size test based on probabilistic principles
different from those of the Gauss test, that we call the ‘Chernoff ’ test. In Section 2.2.4,
we will discuss the Bayesian version of the SPRT, which we call the ‘Bayes’ test.
Later, we will empirically compare the performance of these tests to the two tests
of Section 2.3.

2.2.1 Gauss Test

First, we assume that N , the number of samples to be drawn, is fixed beforehand.
The sets U ,L and I then only contain points (x, n) for which n ≥ N , as in Fig-
ure 2.2a. We accept H+1 : π > π0 when ZN is large and positive, we accept
H−1 : π < π0 when ZN is large and negative and dismiss the test as inconclusive
when ZN is close to 0. In fact, the whole test can be completely characterised by a
function u(N) which defines the boundary between U and I and a function l(N)
which does the same for L and I.

So, u(N) must now be chosen such that when H0 or H−1 is true, the probability
that ZN > u(N) is smaller than α. A fundamental insight is that it is sufficient to
check whether the probability that ZN > u(N) under just H0 is less than α. The
reason is that under H−1, high values of ZN are even less likely than under H0,
and if the probability of ZN > u(N) under H0 is already smaller than α, then this
certainly also holds under H−1, i.e.,

P(ZN > u(N)|H−1) < P(ZN > u(N)|H0) = P(ZN > u(N)|π = π0)

28 2. SEQUENTIAL HYPOTHESIS TESTING

Analogously, we base l(N) only on H0 and not on H+1. Assuming H0 is true, the
individual samples Xi, 1 ≤ i ≤ N , have a Bernoulli distribution with parameter π0,
which means that the test statistic SN has a binomial distribution with parameterN
and π0. This means that we accept H+1 if

SN∑
k=0

(
N

k

)
πk0 (1− π0)N−k ≥ 1− α

2
. (2.7)

For small N the exact binomial distribution is still computationally easy. For large
values of N this is less so, but the Central Limit Theorem (CLT) tells us that the
binomial distribution found on the left side of (2.7) can be well approximated by a
normal distribution: let13

Φ(x) =

∫ x

−∞

1√
2π

e−z
2/2dz, (2.8)

then we accept H+1 if

Φ

(
SN −Nπ0√
Nπ0(1− π0)

)
= Φ

(
ZN√

Nπ0(1− π0)

)
≤ 1− α

2
.

As a result, we find (after making a similar argument for l) that

l(N) = Φ−1
(α

2

)√
Nπ0(1− π0), (2.9)

u(N) = Φ−1
(

1− α

2

)√
Nπ0(1− π0) = −l(N). (2.10)

Throughout the rest of this thesis we call the test of this section the ‘Gauss’ test
because of the approximation based on the CLT. In the case study of Section 2.4,
we always use this approximation, also for ‘small’ values of N . In [37], tests of this
form (the authors of this paper use the exact binomial distribution) are called Single
Sampling Plan (SSP) tests.

The astute reader will notice the relation between the values of l and u on one
hand and the borders of the confidence interval of level 1 − α (the (1 − α)-CI) for
(π − π0)N on the other hand — they are equal if π0 in (2.9) and (2.10) is replaced
by ZN/N . Confidence intervals could be used for the following procedure: draw N
samples, construct the (1− α)-CI around ZN and reject the null hypothesis if 0 is
not inside it. If so, accept H+1 if ZN > 0 and H−1 otherwise. Using the preceding
arguments one can argue that this procedure is similar to the one described above,
and if N is large (which we assume in order to use the CLT) the difference is negli-
gible. As a side remark, a confidence interval constructed using the exact binomial
distribution is often called a ‘Clopper-Pearson interval’ in the scientific literature.

The construction of a CI for π is implemented in several model checkers, e.g., in
PRISM and UPPAAL. By the same principles, a hypothesis test can be carried out
by hand by checking whether π0 is contained in this CI or not.

13Note that theπ used in (2.8) refers to the mathematical constant and not to the probability of interest.

2.2 Known Statistical Hypothesis Tests 29

The main argument against the use of this method is its dependence on the
choice ofN . If π is very different from π0, a small value forN suffices — choosingN
too large then leads to extra inefficiency. Alternatively, if π is close to π0 a large
value for N is needed — choosing N too small then leads to a decrease in power.
In [64], it was proposed to keep sampling until the CI had reached a prespecified
width (this is implemented in the tool MRMC [63]). However, this method does
not yield clear bounds on the error probabilities of the second type. Instead, we
focus on choosing N such that (2.5) and (2.6) are satisfied, as we will describe in the
following.

If π−π0 were known to be equal to some given value ε, then the minimal choice
of N that still satisfies (2.5) and (2.6) can be calculated. If N is large enough, then
π̂N , SN/N approximately has a normal distribution with mean π0+ε and variance
σ2 , (π0 + ε) (1− π0 − ε)/N . Writing ξ = Φ−1(1 − α

2) and σ2
H0
, (π0) (1− π0)/N ,

the probability of not being able to reject H0 after drawing N samples is given by

P (π0 ∈ [π̂N − ξσH0
, π̂N + ξσH0

])
= P (−ξσH0

≤ π̂N − π0 ≤ ξσH0
)

= P
(
−ξσH0

− ε
σ

≤ π̂N − π0 − ε
σ

≤ ξσH0
− ε

σ

)
= Φ

(
ξσH0

− ε
σ

)
− Φ

(
−ξσH0

− ε
σ

)
.

(2.11)

Setting this equation equal to some value β and solving numerically for N guar-
antees that if the true value π is indeed equal to π0 + ε, then the probability of an
error of the second type is at most β. This gives a good indication about how many
samples are needed, as we will show in Section 2.4. In reality we do not know ε, but
we may be able to come up with a guess which we can substitute for ε into (2.11).

If the test terminates as inconclusive after having drawn N samples, a common
pitfall is to draw a second batch of N samples and check if a hypothesis can be
rejected based on the total of 2N samples. However, if there was a probability α
of an error of the first type during both subexperiments, the probability of error
during any one of the two subexperiments is at worst equal to 1− (1− α)2 ≈ 2α, so
that (2.3) and (2.4) are not satisfied. Of course, one can choose the new confidence
level for the individual tests α′ such that α equals 1− (1− α′)2 but then one could
wonder why one would run only two tests instead of any other number of tests.

In the most extreme application of this idea one would check after each sample n
whether a conclusion can be drawn — we call such a test a sequential test. Clearly,
the requirements (2.3) and (2.4) on the errors of the first type are again not satisfied.
The subject of the following section will be a sequential test that does satisfy (2.3)
and (2.4), namely the SPRT.

30 2. SEQUENTIAL HYPOTHESIS TESTING

2.2.2 Sequential Probability Ratio Test (SPRT)

The SPRT for statistical model checking was introduced by Younes14 in [115], based
on ideas that go back to [111]. In [111], Wald tries to sequentially test which of the
following two hypotheses is true,

H+1 : π ≥ π+1,
H−1 : π ≤ π−1

(2.12)

for values π−1 < π+1. He argues that a suitable test statistic is the so-called hy-
potheses’ likelihood ratio:

TN ,
πSN+1 (1− π+1)N−SN

πSN−1 (1− π−1)N−SN
.

Clearly, small values of TN speak in favour ofH−1 while large values speak forH+1.
The idea is then to construct boundaries l′ and u′ such that if TN becomes larger
than u′ we accept H+1 and if TN gets below l′ we accept H−1. We then have to
bound, for given boundaries l′ < u′, the probability of crossing l′ given H+1 and
the probability of crossing u′ given H−1. Wald showed that this is indeed possible.
In particular, for l′ = β/(1−α) and u′ = (1−β)/α one knows that the probability of
acceptingH−1 whileH+1 is true is smaller than αwhile the probability of accepting
H+1 while H−1 is true is smaller than β.

To evaluate the validity of P>π0
(φ), we have the hypotheses of (2.2), which are

similar to those of (2.12) with π+1 = π−1 = π0. Unfortunately, in this case the
value TN is always 1. The idea proposed in [115] is to choose an indifference level δ
such that we can safely assume that the true value for π is not inside the interval
[π0 − δ, π0 + δ]. Then we can set π−1 = π0 − δ and π+1 = π0 + δ and carry out the
above procedure.

This approach is closely related to the fixed sample size procedure of Section 2.2.1.
To better understand the relationship, first note that instead of the test statistic TN
we could also use

log TN , q1SN + q2N,

where

q1 = log

(
p+1 · (1− π−1)

(1− π+1) · p−1

)
, q2 = log

(
1− π+1

1− π−1

)
.

Hence, an equivalent formulation is to use the process ZN = SN−Nπ0 of Figure 2.2
as a test statistic, with boundaries

l(N) =
1

q1
(log l′ − q2N)−Nπ0, (2.13)

u(N) =
1

q1
(log u′ − q2N)−Nπ0. (2.14)

14We use slightly different terminology than the authors of [115]. They use H0 for H+1 of (2.12), they
useH1 for theH−1 of (2.12), and they useH2 to denote π ∈ [π−1, π+1]. Furthermore, where they speak
of a type 1 error and a type 2 error in the case of the SPRT, we speak of two errors of the first type.

2.2 Known Statistical Hypothesis Tests 31

These are linear functions in N . So whereas the boundaries of (2.9) and (2.10) are
proportional to

√
N , the boundaries of (2.13) and (2.14) increase linearly. One can

verify that when π0 = 1
2 or in the limit δ ↓ 0 the boundaries are constants.

In Figure 2.3, we display a possible run of ZN for π0 = 1
3 . The two solid lines

represent l(N) and u(N). They tilt slightly downward, although this is not easily
visible at this scale. The dotted lines represent the expected evolution of ZN if π
is exactly equal to π0 − δ or π0 + δ. Typically, if π is truly outside the indifference
region, the up- or downward tilt of l and u is barely noticeable.

Figure 2.3: Run and test decision area boundaries when π0 = 1
3

, α = 1
20

, δ = 3
50

. Step
function: realisation of ZN with π = π0. Solid lines: area NC boundaries for the SPRT.
Dashed lines: area NC boundaries for the Gauss test seen as a function of the fixed
sample size N . Dotted lines: expected trajectories of ZN if π = π0 − δ and π = π0 + δ
respectively.

The remaining question is then how to choose δ. In some settings, the parameter δ
arises naturally. For example, if the investigator explicitly states that she does not
care if the true probability π is 5.01% instead of 5%, then δ = 0.0001 would be
a natural parameter choice. If the choice of δ does not arise naturally, then the
dependence on δ is an argument against the use of the SPRT. The probabilities of
error of the first type are completely determined by δ, being equal to the bounds
when δ = |π − π0|. Since |π − π0| is unknown, picking δ is as hard as solving the
model checking problem itself, and picking δ too conservatively will cause a large
increase in the expected amount of time before the test can be concluded.

32 2. SEQUENTIAL HYPOTHESIS TESTING

2.2.3 Chernoff Test
In [53], Hoeffding uses an application of earlier results by Chernoff to establish a
bound on the probability that a sum of independent random variables exceeds some
threshold value. Known as the Chernoff-Hoeffding bound or simply as Hoeffding’s
inequality, it states that for any sequence X1, X2, . . . , XN of independent random
variables with P(0 ≤ Xi ≤ 1) = 1, it holds for all t > 0 that

P(X̄ − E(X̄) > t) ≤ e−2Nt2 , (2.15)

where X̄ = 1
N

∑N
i=1Xi, and as a corollary it follows that

P(|X̄ − E(X̄)| > t) ≤ 2e−2Nt2 . (2.16)

In [51], a fixed sample size test was proposed based on (2.16) (the authors of [51]
call the method based on this test ’approximate model checking’). The investigator
chooses a significance parameter α and a so-called ‘approximation’ parameter ε. She
then draws

N =
log
(

2
α

)
2ε2

(2.17)

samples. We can then rewrite (2.16) to

P(|X̄ − π0| ≥ ε) ≤ α. (2.18)

The test is then as follows: we draw N samples and check if |X̄ − π0| > ε. If so,
we reject the null hypothesis, otherwise the test is inconclusive. If we reject the
null hypothesis, we accept H+1 if X̄ > π0 and we accept H−1 otherwise. The test
satisfies (2.3) and (2.4) because under the null hypothesis E(X̄) = π0, so that (2.18)
is really an upper bound for the probability of rejecting the null hypothesis when it
is valid.

The interpretation of ε is not immediately clear. The choice of ε does not affect
the correctness, as the requirements on the probability of error of the first type al-
ways hold, also when |π − π0| < δ. This means that ε is not comparable to the
indifference level δ of the SPRT. However, ε does have an impact on the power, so
we can use it to establish an upper bound on the error probability of the second
type. Assume, without loss of generality, that H+1 holds, so that π = π0 + γ for
some γ > 0. Note that we can use (2.17) to write ε as a function ofN . For an error of
the second type to occur it must hold that after N samples we have that X̄−π0 < ε.
We can use (2.15) and the fact that E(π0 − X̄) = −γ to establish

P(X̄ − π0 < ε) = P(π0 − X̄ > −ε)
= P(π0 − X̄ + γ > γ − ε)

≤ e−2N(γ−ε)2

.

Setting β1 = e−2N(γ−ε)2

means that (2.5) is valid. It has two solutions for N , one
of which gives positive γ − εN (which is a requirement of the Chernoff-Hoeffding

2.2 Known Statistical Hypothesis Tests 33

bound). This solution is given by

N =
2
√

log(β1) log(α2)− log(αβ1

2)

2γ2
. (2.19)

A similar argument can be made for γ < 0, β2 and (2.6). Since we choose β1 = β2,
we obtain the same value for N for both error probabilities of the second type.
An interesting question concerns the relationship between this value for N and a

π0 = 0.5 π0 = 0.2
α γ NC NG NC NG

0.1 667 319 667 164
0.05 0.05 2667 1294 2667 753

0.01 66666 32481 66666 20428
0.1 806 434 806 221

0.025 0.05 3223 1757 3223 1020
0.01 80560 44121 80560 27738

Table 2.1: Chernoff (NC) and Gaussian (NG) sample sizes, β = α.

value N ′ that would be the result of a Gaussian estimate for the distribution of SN ,
found by setting (2.11) equal to α. The actual difference is shown for several differ-
ent choices of α and ε in Table 2.1. One thing to note is that the Chernoff test’s sam-
ple size does not depend on π0, while the Gauss test’s sample size does. Another
thing is that the sample size for the Chernoff test always seems to be larger than for
the Gauss test. This is the price of using an exact result instead of an asymptotic
approximation.

To summarise this section and Section 2.2.1: we have discussed three possible
ways to come up with a choice for N for a fixed sample size test: using the exact
binomial distribution of SN , using a Gaussian approximation or using the Chernoff-
Hoeffding bound. The time complexity of the binomial approach increases linearly
in N , the Gaussian sample sizes rely on an approximation that is bad for small N
and the Chernoff-based bound does not depend on the value of π0 (and has a mild
increase in sample size). Hence, the optimal choice depends on the application and
the investigator’s preferences.

2.2.4 Bayesian SPRT

In [57] an approach based on Bayesian likelihood ratios was proposed. In Bayesian
statistics, the true parameter π is itself seen as the realisation of a random variable.
To implement the method, a prior distribution G must be given on [0, 1] such that the
probability that the true parameter π is some set A ⊂ [0, 1] is assumed to be given
by
∫
A
dG. Let ~X = (X1, . . . , XN) be a random variable with Xi ∈ X , i = 1, . . . , N . If

the probability function P(~X = ~x) of ~X is given by a function f ~X,π(~x) that depends

34 2. SEQUENTIAL HYPOTHESIS TESTING

on a parameter π, then the G-weighted likelihood is given by

FG(~X = ~x|A) =

∫
A

f ~X,π(~x)dG(π).

The prior G is usually chosen to be a Beta distribution, as it is the so-called conjugate
prior of the binomial distribution (that is, if X has a binomial distribution then the
posterior distribution is again a Beta distribution, which is computationally attrac-
tive). Assume that we have drawn a sample x1, . . . , xN of realisations of (2.1) from
the setXN of all possible samples, withN yet to be determined. With sN =

∑N
i=1 xi,

define f ~X,π(~x) = πsN (1− π)sN , so that f ~X,π(~x) is the product of the probabilities of
the individual realisations x1, . . . , xN . The test statistic is the Bayes factor, given by

B(~x) =
FG(~X = ~x|H+1)

FG(~X = ~x|H−1)
.

Assume that we perform a sequential test in which we draw samples from (2.1)
until we can accept H+1 or H−1; we accept H+1 if after N samples B(~X) > T

and accept H−1 if after N samples B(~X) < 1
T , where the N -th sample is the first

sample for which either condition holds. Under the prior, the error probability is
then bounded from above by 1/T . As in [119], one proves (with A−1 the event of
accepting H−1):

FG(A−1|H+1) =
∑
~x∈XN

1

(
B(~X) <

1

T

)
FG(~X = ~x|H+1)

<
∑
~x∈XN

1

(
B(~X) <

1

T

)
FG(~X = ~x|H−1)

T

≤ 1

T

∑
~x∈XN

FG(~X = ~x|H−1) =
1

T
.

If the prior G is defined by a Beta distribution function with shape parameters a
and b, written as Fa,b, then the Bayes factor at step N can be rewritten for computa-
tional reasons to

B(~X) =
1

Fa+SN ,N−SN+b(π0)
− 1

The edges of the critical areas as a function of N can be found by inverting B(~X)
with respect to SN . In Section 2.4.1, we will demonstrate through numerical ex-
amples that the critical area boundaries seem to behave similar to

√
N (we are not

aware of theoretical results on the subject). The exact width of the boundaries de-
pends on the prior G, characterised by the two shape parameters a and b of the Beta
distribution. In the case a = b = 1, the Beta distribution equals the uniform distri-
bution on [0, 1], and the prior is said to be uniform — the uniform prior is often used
in practice (e.g., in the case studies of [57]) as a default.

2.3 The New Supergaussian Sequential Tests 35

We note here that the dependence on the prior is substantial. A prior with shape
parameters a and b can be seen as starting the testing procedure with a uniform
prior and a + b − 2 samples already drawn, with a − 1 times a 1 being drawn and
b− 1 times a 0. It is clear that this has a major impact on the correctness of the test:
for each π0, values a and b can be chosen such that a conclusion will be drawn after
a single sample, regardless of the value of the drawn sample. Moreover, the uniform
prior is in itself a strong assumption, and despite it being nicknamed as the ‘non-
informative prior’ it should not be used to reflect a total lack of information about the
true probability π. In fact, if π0 is close to 0 or 1, one can again reach the situation
in which a conclusion is drawn after the first sample, irrespective of its value. More
on that in Section 2.4.2.

2.3 The New Supergaussian Sequential Tests

In the previous section, we have discussed four statistical tests that all require
model parameters that determine whether a correct and satisfying result is returned.
For the two fixed sample tests (Gauss and Chernoff), this parameter is the fixed
sample size N . If chosen too small, the test terminates inconclusively, leaving the
investigator without an answer. For the two sequential tests — SPRT and Bayes —
an indifference level δ and a prior G have to be chosen respectively, and if chosen
incorrectly, an answer would be returned that does not satisfy the requirements on
the probability of error, without giving any hint that this problem occurred. In this
section we will introduce two sequential tests that do not have this problem, and
which depend only on model parameters in terms of their efficiency.

The outline of this section is as follows. In Section 2.3.1 we will formulate the
problem in terms of the shape of NC. In Section 2.3.2 we will introduce a new test
based on original analysis, and in Section 2.3.3 we will introduce a test which is
an application of the so-called power one tests proposed in [28]. The dependence
of the efficiency of the new tests on their model parameters will be investigated in
Section 2.3.4. The performance of the new tests will be evaluated empirically in
Section 2.4.

2.3.1 The Desired Shape of the Non-Critical (NC) Areas

As was explained in Section 2.1, the principle of statistical model checking is to use
discrete-event simulation to draw sample paths in order to produce a test statistic
ZN that satisfies

ZN − ZN−1 =

{
1− π0 with probability π,
−π0 with probability 1− π.

Since the focus of this section will be on sequential tests, our tests are characterised
by areas U and L such that if ZN enters these areas, we accept H+1 and H−1 re-
spectively (see Figure 2.2b). These areas are in turn completely determined by the

36 2. SEQUENTIAL HYPOTHESIS TESTING

boundaries u(n) and l(n) between U and L respectively and NC. We assume that
the tests are symmetric (i.e., u(n) = −l(n)), which means that we are looking for a
function u(n) such that (2.3-2.6) are satisfied. In the following we will discuss what
general shape this function must have in order to satisfy these properties without
requiring an indifference region or a valid guess.

First note that EZN = N(π − π0), so that under H0 the process ZN is expected
to stay around zero while under the alternative hypotheses ZN is expected to drift
away linearly from 0. For the SPRT, none of (2.3–2.6) will hold for general π − π0.
However, they do hold for all π−π0 /∈ [−δ, δ], and the assumptions of the test mean
that π − π0 must satisfy this condition anyway.

In the following, we will argue that if l and u diverge slower than linearly
but faster than

√
N , we can establish bounds for general π − π0. For a test in

which l and u diverge linearly — that is, for fixed constants ci > 0, i ∈ {1, . . . , 4},
set l(N) = −c1N − c2 and u(N) = c3N + c4 — it holds that for each αi constants
ci can be picked such that (2.3) and (2.4) hold for all π − π0 (because of Proposition
6.5.1 of [99]). However, (2.5) and (2.6) will not hold for arbitrarily small π − π0.

The boundaries of the Gauss test have the form u(N) = a
√
N + k, a, k > 0.

From the literature on Wiener processes [109], we know that these boundaries are
crossed after a finite amount of time with probability 1, and that the expected time
until the boundary is crossed is finite if a < 1 and infinite otherwise, regardless of k.
So for the Gauss test, (2.3) and (2.4) will also not hold. From this we can conclude
that the size of NC needs to grow asymptotically faster than

√
N and slower than

linearly.
In the following, we investigate two distinct types ofNC-area upper bounds that

grow asymptotically faster than
√
N and slower than linearly, namely bounds of the

form a(N + k)b, with b ∈ (1
2 , 1), and bounds of the form a

√
(N + k) log(N + k). We

will introduce two different tests based on these types of bounds in Sections 2.3.2
and 2.3.3 respectively, both using different techniques to ensure the bounds (2.3)
and (2.4).

2.3.2 Azuma Test

The test of this section is based on Proposition 6.5.1 of [99]. We begin with some
background on proving the correctness of a test. In order to prove correctness, the
fundamental difference between a fixed sample size test and a sequential test is
that one needs to bound the probability under H0 that ZN ∈ [−u(N), u(N)] for a
value N which is 1) known a priori for the former and 2) a random variable for the
latter. For N fixed, this probability of interest is a tail probability, and several well-
known bounds from probability theory deal with bounds on or approximations of
tail probabilities.

The Gauss test of Section 2.2.1 uses the Central Limit Theorem, which gives an ap-
proximation for the tail probability of sums of independent, identically distributed
random variables. The Chernoff test of Section 2.2.3 used the Chernoff-Hoeffding
bound, which establishes an exact (but looser) bound on tail probabilities of sums

2.3 The New Supergaussian Sequential Tests 37

of i.i.d. random variables. Another bound that can be applied in our setting is the
Azuma-Hoeffding inequality, which gives a bound on the tail probabilities of martin-
gales with bounded differences.15 Since our process ZN is a martingale with bounded
differences, the Azuma-Hoeffding Inequality could be used to establish a fixed sam-
ple size test, even if the Chernoff-Hoeffding bound may be tighter. The possibility
of such a test was mentioned in [66], and has recently been investigated in [104] and
[105].

While the Azuma-Hoeffding theorem establishes a bound for the probability
that ZN is outside [−u(N), u(N)], Ross shows in Section 6.5 of [99] that a bound
can also be established for the probability that ZM is outside [−u(M), u(M)] for
any M ≥ N , and showed that these bounds were equal. He calls this theorem “The
Generalized Azuma Inequality”. The proof of the theorem is a simple application of
Proposition 6.5.1 of [99], which determines an upper bound for the probability that
a martingale with bounded differences ever crosses some line aN + b, with a, b > 0.

In this section we will establish a similar bound for the probability that a mar-
tingale with bounded differences eventually leaves an area [−u(N), u(N)], where
u(N) = a(N + k)b, b ∈ [1

2 , 1) — see Theorem 2.1. The proof is similar, but requires
an additional lemma, and we need the fact that our region has both a lower and
upper boundary for our proof technique to work. The basis of our upper bound is
that, under the null hypothesis, the process Zn is a martingale, i.e., a stochastic pro-
cess for which it holds that E(Zn|Zn−1, . . . , Z0) = Zn−1, and that the size of each
step Xi is bounded. This allows us to use a similar technique as the one used to
prove Proposition 6.5.1 of [99]. We need the following two lemmas from [99]:

Lemma 2.1. Let X be such that E(X) = 0 and P(−a ≤ X ≤ b) = 1. Then for each
convex function f it holds that

E(f(X)) ≤ b

a+ b
f(−a) +

a

a+ b
f(b).

Proof. See Lemma 6.3.1 (page 305) of [99].

Lemma 2.2. For θ ∈ [0, 1]

θe(1−θ)x + (1− θ)e−θx ≤ ex
2/8.

Proof. See Lemma 6.3.2 (page 306) of [99].

We also need the following two new lemmas:

15A martingale is a stochastic process YN for which it holds that E(YN |YN−1, . . . , Y0) = YN−1, and
if P(|YN − YN−1| < c) = 1 for some constant c <∞ and all N ≥ 0 then the martingale is said to have
bounded differences.

38 2. SEQUENTIAL HYPOTHESIS TESTING

Lemma 2.3. For fn = a(n + k)b, f ′n = d
dnfn, it holds for n ∈ R, n + k > 0, a > 0 and

b ∈ (2
3 , 1) that

fn−1 − fn +

(
3− 2

b

)
f ′n + 2

(
f ′n−1

f ′n
− 1

)
fn−1 ≤ 0 (2.20)

Proof. Writing z , n+k−1
n+k ,

gb(z) , 2z2b−1 − zb − 1 + (3b− 2)(1− z),

gb(z) equals the left-hand side of (2.20) after dividing by fn. Since the statements
n + k = 1

1−z ∈ (0,∞) and z ∈ (0, 1) are equivalent, we only need to evaluate
whether gb is negative on (0, 1). Since gb(1) = 0, we are done if we can show that
d
dz gb(z) is positive on (0, 1). Writing y , zb−1, we have that

d

dy
gb(y) = (4b− 2) y2 − by − (3b− 2)

We find that this parabola has two roots, namely 1 and 2−3b
4b−2 . The second root is

negative if b ∈ (2
3 , 1), which proves the lemma.

Lemma 2.4. Let Xi, i ∈ N, be i.i.d. such that P(0 ≤ Xi ≤ 1) = 1 and E(Xi) = π0. Let
Sn =

∑n
i=1Xi and Zn = Sn−nπ0. Let fn = a(n+ k)b with k > 0, a > 0 and b ∈ (2

3 , 1),
and let the process be stopped at −fn and fn (i.e., if ∃m s.t. Zm < −fm then Zm := −fm
and ∀m′ > m Zm′ = −fm — similarly if ∃m s.t. Zm > fm). Let cn = 8(3 − 2

b) d
dnfn.

Then
Wn , e

cn(Zn−fn). (2.21)

is a supermartingale, i.e., E(Wn|Wn−1, . . . ,W1) ≤Wn−1.

Proof. The process Wn is a supermartingale if and only if

E(Wn|Fn−1)

Wn−1
≤ 1

with Fn ,Wn, . . . ,W1. Now,

Wn

Wn−1
=

ecn(Zn−fn)

ecn−1(Zn−1−fn−1)

=
ecn−1fn−1

ecnfn
· ecnZn

ecn−1Zn−1

Note that,

E
(

ecnZn

ecn−1Zn−1
|Fn−1

)
= E(ecn·(Xn−π0)) · E(ecnZn−1

ecn−1Zn−1
|Fn−1)

= E(ecn·(Xn−π0)) ·W
cn−cn−1
cn−1

n−1 · ecnfn−1

ecn−1fn−1

2.3 The New Supergaussian Sequential Tests 39

which means that

E(Wn|Fn−1) = W
cn
cn−1

n−1 · e
cnfn−1

ecnfn
· E(ecn·(Xn−π0))

So for Wn to be a supermartingale, it must hold that

ecnfn−1

ecnfn
· E(ecn·(Xn−π0)) ≤W

1− cn
cn−1

n−1 .

From Lemmas 2.1 and 2.2 we know that this is implied by

ecnfn−1−cnfn · e 1
8 c

2
n ≤W

1− cn
cn−1

n−1

or

cnfn−1 − cnfn + 1
8c

2
n ≤ logW

1− cn
cn−1

n−1 .

We also know that

logW
1− cn

cn−1

n−1 = log e(cn−1−cn)·(Zn−1−fn−1)

= (cn−1 − cn) · (Zn−1 − fn−1).

We know that cn is positive and decreasing in n, and by implication that cn−1−cn >
0. This means that for the inequality to hold we must find the lowest possible
Zn−1. Normally, Zn−1 can be as low as −(n − 1)p. However, because the process
is stopped also at −fn−1 this is the lowest possible value. Hence, we only have to
show whether

fn−1 − fn +
1

8
cn ≤ −2

(
cn−1

cn
− 1

)
fn−1, (2.22)

and this follows from Lemma 2.3.

We can then prove the following theorem:

Theorem 2.1. Again, let Xi, i ∈ N, be i.i.d. such that P(0 ≤ Xi ≤ 1) = 1 and E(Xi) =
π0, and let Sn =

∑n
i=1Xi and Zn = Sn − nπ0. Let fn = a(n+ k)b with k > 0, a > 0

and b ∈ (2
3 , 1). Then,

P(∃n ≥ 0 : Zn > fn) ≤ e−8(3b−2)a2k2b−1

(2.23)

Proof. LetWn = ecn(Zn−fn). Since we know thatWn is a supermartingale by Lemma 2.4,
we can define the bounded stopping time

N(m) = min{n : |Zn| ≥ fn or n = m}

40 2. SEQUENTIAL HYPOTHESIS TESTING

to find that
P(ZN(m) ≥ fN(m)) = P(WN(m) ≥ 1)

≤ E(WN(m))
≤ E(W0) = e−f(0)c(0)

= e−8(3− 2
b)ba2k2b−1

,

where the first inequality holds because of the Markov inequality, and the second
inequality because of the Martingale Stopping Theorem (Theorem 6.2.2 of [99]) and
the fact that N(m) is bounded. Theorem 2.1 then follows from taking the limit
of m→∞.

The theorem gives us the following corollary:

Corollary 2.1. If we carry out the test of Section 2.1 with the boundary between U andNC
defined by u(N) = a(N + k)b and the boundary between L and NC defined by −u(N).
Then (2.3), (2.4), (2.5) and (2.6) are all satisfied, with

α1 = α2 = β1 = β2 = e−8(3b−2)a2k2b−1

Proof. Follows directly from Theorem 2.1.

Only one of the following claims is true: H+1, H−1 or H0. If the first or second
of these claims is true, the error probability is β1 or β2. If the third claim is true, the
probability of error is α1 + α2. As we argued in Section 2.1.2, we assume H0 not
to hold. Still, to be on the safe side we will focus on the worst-case behaviour and
fix α = 2 · e−8(3b−2)a2k2b−1

whenever we apply the test of Corollary 2.1.
Throughout this thesis we will call the test of Corollary 2.1 the ‘Azuma’ test. In

Section 2.3.4 we will further elaborate on how to choose the parameters a and k.

2.3.3 Darling Test

In Section 2.3.1 we argued why the boundaries ofNC need to grow faster than
√
N

for (2.3) and (2.4) to hold. Not only bounds of the form a(n + k)b satisfy this prop-
erty; we can establish similar results for a

√
(N + k) log(N + k), but we will start

with a discussion on how to arrive at these results. In [27], it was proven that for
NC widths of order greater than

√
cN log logN , for some c > 2, the probability that

it will be left is smaller than 1. Based on [27], it was proven in [28] (Theorem 3)
that for the test of Section 2.1 for general U-NC boundary u(N) and L-NC bound-
ary −u(N), if one could find an ε > 0 such that

∞∑
n=1

e−
u2(n)
n+1 ≤ ε (2.24)

then the probability of error was bounded from above by 2
√

2ε. The idea is then to
carry out the test of Section 2.1, with u(N) chosen such that (2.24) can be used to

2.3 The New Supergaussian Sequential Tests 41

show that (2.3-2.6) hold. The question is then how to choose u(N), and whether the
bound of (2.24) is better than the bound of Theorem 2.1 for the choice of u(N).

For boundaries of the form u(N) = a(N + k)b, the bound of (2.24) can be much
weaker than the bound of Theorem 2.1. For example, for u(N) = (N + 2)3/4, the
bound of Theorem 2.1 evaluates to about 0.1182 while using (2.24) we cannot ob-
tain a bound that is much better than 1.8821, so there is not much merit in us-
ing (2.24) for boundaries of this form. On the other hand, our proof of Theorem 2.1
requires analytical steps that do not work for boundaries that are of order N2/3 or
tighter. For boundaries of the form u(N) =

√
a(N + 1) log (N + k) the summation

on the left-hand side of (2.24) equals the Hurwitz zeta function evaluated in a and k.
This means that we now have a choice between a relatively strong bound for the
case N b, b ∈ (2

3 , 1), and a relatively weak bound for the case
√
N logN . For bound-

aries of the latter type, a rather large value of k must be chosen in order to obtain
bounds for reasonable values of α, but asymptotically the non-critical area will be-
come much smaller than if an order N b boundary is chosen. This has an impact on
the efficiency of the two methods, as we will see in Section 2.3.4.

Throughout the rest of this thesis we will apply (2.24) only to boundaries of the
form u(N) =

√
a(N + 1) log (N + k). We will call the test of Section 2.1 carried out

using this boundary the ‘Darling’ test.

2.3.4 Optimal Parameter Choice
To summarise, we now have two new tests, with non-critical area upper boundaries
u(N ; a, k) given by a(N + k)b and

√
a(N + 1) log(N + k) respectively. Both depend

on parameters a and k that in both settings have the same influence, while the
Azuma test also depends on a third parameter b. The parameter a influences the
increase in width ofNC and its influence does not fade relative toN whenN grows
large. A high value of parameter k shifts the cone that definesNC (see Figure 2.2b)
to the left, making the area NC wider for small values of N) — it can be seen as
a startup parameter in some sense: if two tests are carried out with the same a
and k1 < k2 respectively, the second test can be seen as the first test with ZN still at
zero after N = k2− k1 samples have been drawn. A high value for b means that the
area NC boundary u(N) will more closely resemble a straight line, which means
that it will grow much wider asymptotically.

A high value for k makes it harder to accept an alternative hypothesis in the
beginning, but — since a and b can be chosen smaller to maintain the same signif-
icance level α — easier to reject as N grows bigger. Since the upper bound on the
probability of error is fixed to equal α, k can be determined as a function of a, α
and b. For the Azuma test, we easily derive from Corollary 2.1 that

kAzuma(a, α, b) =

(
log
(
α
2

)
8a2(2− 3b)

) 1
2b−1

For the Darling test, it is harder to obtain a similar expression from (2.24) since we
have to solve for the lower bound of a summation, but for practical purposes the

42 2. SEQUENTIAL HYPOTHESIS TESTING

summation in (2.24) can be approximated by the integral∫ ∞
1

e−
u2(x)
x+1 dx.

We then derive

kDarling(a, α) =

(
α(a− 1)

2
√

2

)− 1
a−1

− 1.

We then want to minimise the expected number of samples drawn, which we ap-
proximate using the intersection of the expected trajectory of ZN — which equals
|π − π0|N — and u(N). This means that we have to solve

|π − π0|N = u(N ; a, k(a, α)) (2.25)

for N and then minimise over a. Unfortunately, both in the case of the Azuma
and the Darling test, solving (2.25) for N does not lead to a closed form expression.
However, in both cases we can do the minimisation numerically, since the function
u(N) − |π − π0|N has a derivative simple enough to allow for Newton’s method
to find its roots. We seek the minimum of N(a) for a ∈ [0,∞), but for the sake of
being able to use straightforward numerical techniques, we search for the minimum
of N(1

1+a) for 1
1+a ∈ (0, 1]. Since this is a bounded interval, we can use techniques

such as golden section search [20] to find the minimum. For the Darling test we
even know that a > 1, meaning that we can minimise N(1

a) on (0, 1].
In Table 2.2, we show the (approximately) optimal parameters a and k that we

found for both tests for several values of γ (recall that this is our guess for |π− π0|).
We can see that for the Azuma test, a grows proportional to

√
γ, and k inversely

proportional to γ2.
The final remaining value to choose is then the parameter b of the Azuma test.

A higher value for b means a tighter bound on the error probability of the first type,
but the area NC will grow larger asymptotically. The difference in terms of the
tightness of the bound can be observed in Table 2.3, where we display the solutions
to equation (2.25) for the Azuma test with several values of b and the Darling test
(with a and k chosen optimally). The impact of a low value for b is twofold: the

γ Azuma a Azuma k Darling a Darling k
10−1 0.3452 2.40·102 1.6686 7.63·102

10−2 0.1092 2.40·104 1.4363 6.97·104

10−3 0.0345 2.40·106 1.3278 6.68·106

10−4 0.0110 2.40·108 1.2644 6.54·108

10−5 0.0035 2.40·1010 1.2225 6.46·1010

10−6 0.0011 2.40·1012 1.1927 6.42·1012

Table 2.2: Approximately optimal parameter choices for α = 0.05. For this table we
used b = 3

4

2.4 Results and Comparisons 43

expected number of needed samples when the guess is correct will be higher, but
the test will become less sensitive to the guess γ. Note, however, that even for
very low values of b (e.g., 0.67), the Azuma test will still be more sensitive than the
Darling test. Since for b = 0.67 the Azuma test has a higher expected number of
needed samples than the Darling test, while it is still less sensitive, the Azuma test
has no advantages over the Darling test so we can say that it performs strictly worse
than the Darling test. The choice b = 0.99 on the other hand leads to enormous
parameter sensitivity. Values of b around 3

4 seem to strike a nice balance, and in
Section 2.4, where we empirically validate the analysis of this section, we will only
consider the Azuma test with this parameter choice.

2.4 Results and Comparisons

In this section we compare the performance of the existing tests discussed in Sec-
tion 2.2 to the new tests introduced in Section 2.3 — see Table 2.5 for a summary. We
do this in two ways: we will begin in Section 2.4.1 by comparing the tests in terms
of the implied test decision areas as discussed in Section 2.1, and see how these ar-

|π − π0| γ Azuma Darling
b = 0.67 b = 0.75 b = 0.9

10−1

10−1

10−2

10−3

10−4

9.85·103

4.258·104

3.961·105

3.933·106

4.792·102

2.249·103

2.116·104

2.104·105

1.875·102

9.842·102

9.394·103

9.351·104

1.272·103

1.606·103

2.088·103

2.567·103

10−2

10−1

10−2

10−3

10−4

5.837·106

9.85·105

4.258·106

3.961·107

1.421·106

4.792·104

2.249·105

2.116·106

7.998·1072

1.875·104

9.842·104

9.394·105

2.041·105

1.784·105

2.091·105

2.567·105

10−3

10−1

10−2

10−3

10−4

6.251·109

5.837·108

9.85·107

4.258·108

1.42·1010

1.421·108

4.792·106

2.249·107

7.998·10172

7.993·1074

1.875·106

9.842·106

2.865·107

2.444·107

2.284·107

2.571·107

10−4

10−1

10−2

10−3

10−4

6.703·1012

6.251·1011

5.837·1010

9.85·109

1.42·1014

1.42·1012

1.421·1010

4.792·108

7.998·10272

7.993·10174

7.995·1076

1.875·108

3.675·109

3.141·109

2.893·109

2.776·109

Table 2.3: For each combination (γ, |π − π0|, test type), we display the solution to (2.25)
— i.e., the N for which the expected trajectory leaves NC — with parameters a and k
chosen optimally. Bold values imply that γ = |π − π0|, i.e., that the guess is correct.

44 2. SEQUENTIAL HYPOTHESIS TESTING

eas behave as a function of the number of samples drawn. In Section 2.4.2, we will
then compare the tests by the three performance measures mentioned in the intro-
duction: the correctness, the power and the efficiency. These measures may depend
on the guess γ, the indifference level δ or the prior measure G, as summarised in
Table 2.4.

Test Correctness Power Efficiency
Gauss — γ γ
SPRT δ N.A. δ

Chernoff — γ γ
Bayes G — G

Azuma — — γ
Darling — — γ

Table 2.4: Parameter dependence.

2.4.1 Shape of the Non-Critical Areas (NC)
As explained in Section 2.1, all of the tests in this chapter can be considered in the
context of a single framework: a random walk Zn that always jumps up by 1 − π0

with probability π or down by π0 with probability 1 − π. The tests can then be de-
fined in terms of the boundaries of the test decision areas (see Figure 2.2). The most
fundamental property of the test decision areas is the shape of NC, displayed for
each test in Table 2.5. In this section we will zoom in on these shapes, particularly

Test Type Source Section NC Area Width
Gauss fixed N CLT 2.2.1 O(

√
N)

SPRT sequential [111], [115] 2.2.2 constant
Chernoff fixed N [51] 2.2.3 O(

√
N)

Bayes sequential [54], [57], [119] 2.2.4 O(
√
N)

Azuma sequential this thesis 2.3.2 O(N b), b ∈ (2
3 , 1)

Darling sequential [28], this thesis 2.3.3 O(
√
N logN)

Table 2.5: Summary of the tests.

on how the tests compare to each other in this respect. Note that the areas NC of
all the old tests except the SPRT widen approximately as

√
N , while the areasNC of

the new tests widen faster.
In Figure 2.4, we compare the non-critical areasNC for the Gauss, SPRT, Azuma

and Darling test for the symmetrical situtation π0 = 1
2 . The area NC is narrower

for the Azuma test than for the Darling test for small values of N , but the Azuma
boundaries eventually overtake those of the Darling test. This is obvious as func-
tions of the type N

3
4 are asymptotically wider than those of type

√
N log(N). Both

the Azuma test and the Darling test have a much wider areaNC than the other tests,

2.4 Results and Comparisons 45

Z
N

 =
 X

1+
X

2+
..

.+
X

N
-p

0
N

N

SPRT
Bayes

Gauss
Chernoff

Azuma
Darlin

g

-800

-600

-400

-200

 0

 200

 400

 600

 800

 0 5000 10000 15000 20000 25000 30000

edge of state space

Figure 2.4: Critical regions, π0 = 1
2

, δ = 1
100

, γ = 1
10

. Solid lines are used for the
sequential tests, dash-dotted lines for the fixed sample size tests.

which is the price they pay for not risking an inconclusive termination, and for not
requiring an indifference region. When we compare the areas NC of the Gauss
test, the Chernoff test and the Bayes test, we see that the Gauss and Bayes tests are
strongly similar, which leads to the interesting observation that a sequential version
of the Gauss test can satisfy the property of correctness when we assume that π is
sampled according to a prior measure G. The Chernoff test behaves similarly to the
other two tests, but its area NC is wider. The area NC of the SPRT does not widen
at all.

Figure 2.5 is similar to Figure 2.4 but with π0 set to 1
20 . We mention two differ-

ences. First, the Gauss test’s areaNC is less broad due to the smaller variance under
the null hypothesis. Second, the boundaries of the SPRT are no longer constants,
but drift downward (see (2.13) and (2.14)).

2.4.2 Simulation Results

In this section, we compare the tests discussed in this chapter by empirically evalu-
ating their performance for a range of underlying parameter values. Since we only
compare different statistical tests, we do not need to consider the simulation aspect

46 2. SEQUENTIAL HYPOTHESIS TESTING

Z
N

 =
 X

1+
X

2+
..

.+
X

N
-p

0
N

N

SPRT
Gauss&Bayes

Azuma
Darlin

g

Chernoff

-800

-600

-400

-200

 0

 200

 400

 600

 800

 0 5000 10000 15000 20000 25000 30000

edge of state space

Figure 2.5: Critical regions, π0 = 1
20

, δ = 1
100

, γ = 1
10

. Solid lines are used for the
sequential tests, dash-dotted lines for the fixed sample size tests.

of statistical model checking. Accordingly, we let our computer program directly
draw samples from a Bernoulli distribution with (known) parameter π. With π cho-
sen, the remaining parameter to be chosen is δ for the SPRT, G for the Bayes test
and γ for the other tests. In all cases α = β1 = β2 = 0.05.

For each test we estimate the following metrics:

1. ρ, the probability that a test accepts the right hypothesis, used as a measure
for the correctness (the higher the better);

2. υ, the probability that a test proves inconclusive, used as a measure for the
power (the lower the better);

3. η, the expected number of samples drawn before the test is concluded, used
as a measure for the efficiency (the lower the better).

The procedure is as follows: we conduct each test 1 000 times, let ρ̂ be the fraction
of correct conclusions, υ̂ the fraction of tests that remained inconclusive (where for
the sequential tests, we set a 60 second time bound) and η̂ be the average number of
samples drawn. In Tables 2.6, 2.7 and 2.8, we display these estimates plus/minus

2.4 Results and Comparisons 47

the half-width of a 95%-CI around the estimate. In Tables 2.6 and 2.7 we have
set π0 = 1

2 ; the only difference between these two tables is the choice of |π − π0|,
which equals 0.1 for the former and 0.001 for the latter. For Table 2.8 we have
set π = 1

5 and |π − π0| = 0.01. The rows in bold indicate that the guess γ (or
indifference level δ) is exactly equal to |π − π0|.

Test γ (or δ) ρ̂ υ̂ η̂
0.1 0.933 ± 0.015 0.067 ± 0.015 3.19·102

Gauss 0.01 1.0 ± 0.0 0.0 ± 0.0 3.25·104

0.001 1.0 ± 0.0 0.0 ± 0.0 3.25·106

0.1 0.965 ± 0.011 0.0 ± 0.0 (3.62 ± 0.15)·101

SPRT 0.01 1.0 ± 0.0 0.0 ± 0.0 (3.65 ± 0.05)·102

0.001 1.0 ± 0.0 0.0 ± 0.0 (3.69 ± 0.02)·103

0.1 0.992 ± 0.006 0.008 ± 0.006 6.67·102

Chernoff 0.01 1.0 ± 0.0 0.0 ± 0.0 6.67·104

0.001 1.0 ± 0.0 0.0 ± 0.0 6.67·106

a = b = 1 0.957 ± 0.013 0.0 ± 0.0 (4.62 ± 0.34)·101

Bayes a = b = 10 0.998 ± 0.003 0.0 ± 0.0 (7.77 ± 0.39)·101

a = b = 100 1.0 ± 0.0 0.0 ± 0.0 (1.57 ± 0.05)·102

0.1 1.0 ± 0.0 0.0 ± 0.0 (4.98 ± 0.13)·102

Azuma 0.01 1.0 ± 0.0 0.0 ± 0.0 (2.28 ± 0.02)·103

0.001 1.0 ± 0.0 0.0 ± 0.0 (2.12 ± 0.00)·105

0.1 1.0 ± 0.0 0.0 ± 0.0 (1.26 ± 0.02)·103

Darling 0.01 1.0 ± 0.0 0.0 ± 0.0 (1.59 ± 0.02)·103

0.001 1.0 ± 0.0 0.0 ± 0.0 (2.08 ± 0.03)·103

Table 2.6: π0 = 0.5, π = 0.4

The number of samples needed for the Gauss test grows inversely proportional to
the square root of γ. Because the Gauss test is a fixed sample size test, η̂ has no
variance. The main drawback is that if γ is considerably larger than |π − π0|, the
Gauss test will almost never draw a conclusion. This is witnessed by υ̂ � 0, seen
particularly in Table 2.7.

The SPRT is the most efficient when δ is picked just right; in each table, its
value η̂ is the lowest among all tests that satisfy correctness (not counting the Bayes
test which has different assumptions). However, its performance degrades sharply
when δ is chosen larger than |π − π0|. In Table 2.7, the CI for ρ̂ contains 1

2 when δ is
large, which is the worst level of ρ that a test can satisfy (after all, if the correctness
was even lower one could always use the opposite result of the test and obtain a
correctness that is > 1

2). The average number of samples needed seems to grow
inversely proportional to δ.

Both the Azuma and Darling tests are very conservative: they have a ρ̂ of well
over 95%. The average total sample sizes for the Azuma and Darling tests compare
reasonably well to the approximations of Table 2.3. When the guess is (almost)
correct, the Azuma test is more efficient than the Darling test. However, if γ is

48 2. SEQUENTIAL HYPOTHESIS TESTING

taken to be considerably larger than |π − π0|, the number of samples needed for
the Azuma test blows up, while the Darling test remains remarkably insensitive to
the model parameters, as can been seen in all tables. The Azuma result υ̂ ≈ 1 in
Table 2.7 means that the Azuma test did not draw a conclusion within a 60 second
time period.

We see in general that the Chernoff test requires more samples than the Gauss
test; in Table 2.8, for which π0 equals 1

5 instead of 1
2 , the difference between the

sample sizes of the Gauss and Chernoff tests is larger than in Tables 2.6 and 2.7.
This is consistent with the discussion of Section 2.2.3. The bound on the probability
of error of the second type for the Chernoff test appears to be rather loose; when
the guess γ is correct, the estimate for the probability of inconclusive termination υ̂
seems to be well below β2 = 0.05 in Tables 2.6 and 2.7.

The Bayes behaves fundamentally different from the other tests. It requires that
its prior G equals the true distribution from which π is drawn for its bounds on
the error probabilities to hold. The true distribution is in this section a degener-
ate distribution on π0. The uniform prior (i.e., a = b = 1) performs adequately in
Table 2.6, but when π is very close to π0 (e.g., in Table 2.7) or when π0 does not
equal 1

2 (e.g., in Table 2.8), its performance is unsatisfactory. For a = b = 100, we
get more conservative results when π0 = 1

2 , but very bad results when π0 = 1
5 . All

of this confirms the discussion at the end of Section 2.2.4. In general, it appears to
be best to choose a and b such that the mean a/(a + b) of the resulting Beta distri-
bution equals π0, and that the higher a and b are chosen, the lower the probability
of error will be. It is unclear how to determine ‘optimal’ choices for a and b, as they
lack a clear interpretation in terms of the error probabilities. This ambiguity is an
argument against use of the method.

Finally, when we compare the computational complexity of the methods, the
fixed sample size tests tend to be much less expensive due to the fact they have
to compute the boundary of NC only once, when the samples have been drawn,
whereas the sequential tests require that this happens after each sample. The Cher-
noff test performs the best overall: the most expensive procedures to be carried out
are to evaluate a logarithm three times in order to determine N , and then after N
samples have been drawn it needs to compare the sample mean to a constant which
requires the evaluation of a logarithm and a square root. The Gauss test performs
second best: it requires a numerical root-finding procedure to findN , and exponen-
tiation and evaluation of the inverse of the standard normal distribution function to
carry out the test after drawing the samples. Among the sequential tests, the SPRT
is the most computationally inexpensive: after each sample N is drawn, the value
of the process ZN only has to be compared to linear boundaries. The Azuma and
Darling tests are also computationally easy; the most expensive procedures are the
evaluation of two square roots for the former and the evaluation of a square root
and a logarithm for the latter. The Bayes test is the most expensive; it requires the
inversion of the Beta distribution function, which can be very expensive for some
middle-ranged choices of the parameters a and b (for large values one can resort to
asymptotic approximations).

2.5 Steady-State Measures 49

Test γ (or δ) ρ̂ υ̂ η̂
0.1 0.031 ± 0.011 0.948 ± 0.014 3.19·102

Gauss 0.01 0.058 ± 0.014 0.933 ± 0.015 3.25·104

0.001 0.952 ± 0.013 0.048 ± 0.013 3.25·106

0.1 0.505 ± 0.031 0.0 ± 0.0 (6.31 ± 0.33)·101

SPRT 0.01 0.567 ± 0.031 0.0 ± 0.0 (5.37 ± 0.03)·103

0.001 0.957 ± 0.013 0.0 ± 0.0 (3.35 ± 0.02)·105

0.1 0.004 ± 0.004 0.995 ± 0.004 6.67·102

Chernoff 0.01 0.019 ± 0.008 0.981 ± 0.008 6.67·104

0.001 0.987 ± 0.007 0.013 ± 0.007 6.67·106

a = b = 1 0.575 ± 0.031 0.0 ± 0.0 (5.40 ± 1.80)·104

Bayes a = b = 10 0.636 ± 0.030 0.0 ± 0.0 (1.05 ± 0.22)·105

a = b = 100 0.729 ± 0.028 0.0 ± 0.0 (1.55 ± 0.24)·105

a = b = 1000 0.816 ± 0.024 0.0 ± 0.0 (2.88 ± 0.31)·105

0.1 0.0 ± 0.0 1.0 ± 0.0 (6.67 ± 0.01)·108

Azuma 0.01 1.0 ± 0.0 0.0 ± 0.0 (1.40 ± 0.02)·108

0.001 1.0 ± 0.0 0.0 ± 0.0 (4.63 ± 0.13)·106

0.1 1.0 ± 0.0 0.0 ± 0.0 (2.81 ± 0.03)·107

Darling 0.01 1.0 ± 0.0 0.0 ± 0.0 (2.42 ± 0.03)·107

0.001 1.0 ± 0.0 0.0 ± 0.0 (2.25 ± 0.03)·107

Table 2.7: π0 = 0.5, π = 0.499

2.5 Steady-State Measures

So far, we have restricted ourselves to verifying properties of the form P>p(φ),
where φ is some path formula and P is the probabilistic operator found in logics
such as PCTL and CSL (see Section 1.1.2). These logics also contain the steady-state
operator S>π0

(Φ), where Φ is a CTL-state formula. In this section we focus on the
steady-state operator. We say that S>π0(Φ) is satisfied when

vΦ ,
∑
x�Φ

v(x) > π0, (2.26)

where v(x) is the steady-state probability of being in state x of the Markov chain.
As is the case for the P-operator, one might find it necessary to resort to statisti-

cal techniques if the state space is too large to compute the steady-state probabilities
numerically. Statistical techniques for estimating or testing hypotheses regarding
steady-state probabilities are more complicated than their analogues for transient
measures. The most obvious estimate for vΦ is the long-run average fraction of
time spent in states that satisfy Φ. The problem is how to decide that the run is long
enough to be used for a long-run average.

There are several ways to solve this problem, of which we first discuss the batch
means method, followed by the regeneration method and perfect simulation. The main

50 2. SEQUENTIAL HYPOTHESIS TESTING

Test γ (or δ) ρ̂ υ̂ η̂
0.1 0.036 ± 0.012 0.953 ± 0.013 1.64·102

Gauss 0.01 0.946 ± 0.014 0.054 ± 0.014 2.04·104

0.001 1.0 ± 0.0 0.0 ± 0.0 2.39·106

0.1 0.489 ± 0.031 0.0 ± 0.0 (3.70 ± 0.17)·101

SPRT 0.01 0.949 ± 0.014 0.0 ± 0.0 (2.19 ± 0.10)·103

0.001 1.0 ± 0.0 0.0 ± 0.0 (2.39 ± 0.03)·104

0.1 0.007 ± 0.005 0.993 ± 0.005 6.67·102

Chernoff 0.01 1.0 ± 0.0 0.0 ± 0.0 6.67·104

0.001 1.0 ± 0.0 0.0 ± 0.0 6.67·106

a = b = 1 0.599 ± 0.030 0.0 ± 0.0 (5.64 ± 0.56)·102

Bayes a = 1, b = 4 0.853 ± 0.022 0.0 ± 0.0 (8.02 ± 0.63)·102

a = b = 100 0.0 ± 0.0 0.0 ± 0.0 1.00 ± 0.0
a = 100, b = 400 0.994 ± 0.005 0.0 ± 0.0 (1.64 ± 0.04)·103

0.1 1.0 ± 0.0 0.0 ± 0.0 (1.41 ± 0.01)·106

Azuma 0.01 1.0 ± 0.0 0.0 ± 0.0 (4.79 ± 0.10)·104

0.001 1.0 ± 0.0 0.0 ± 0.0 (2.24 ± 0.01)·105

0.1 1.0 ± 0.0 0.0 ± 0.0 (2.04 ± 0.02)·105

Darling 0.01 1.0 ± 0.0 0.0 ± 0.0 (1.78 ± 0.02)·105

0.001 1.0 ± 0.0 0.0 ± 0.0 (2.10 ± 0.02)·105

Table 2.8: π0 = 0.2, π = 0.19

idea behind the batch means method is to divide the total sample into N batches of
length k. We run one lengthy simulation consisting of N · k steps (with N yet to be
determined) and a sequence s1, . . . , sNk of visited states. Let 1Φ(si) equal 1 if the i-
th state observed in the simulation satisfied Φ and 0 otherwise. Then a consistent
estimator of vΦ would be

S′N ,
1

Nk

Nk∑
i=1

1Φ(si),

(where the apostrophe serves to distinguish from the SN of Section 2.1.2) were it
not for the fact that the random variables underlying the realisations 1Φ(si) are not
mutually independent. For the j-th batch, one can compute the batch mean

ȳj(Φ) =
1

k

k∑
i=1

1Φ(si+(j−1)k).

The N batch means then become mutually independent and normally distributed
as k → ∞. With Z ′N , S′N −Nπ0, this means that for large values of k we can use
the Central Limit Theorem to construct a (1− α)-CI for Z ′N .

Since we can construct confidence intervals, we can also construct a fixed sample
size hypothesis test as follows: continue sampling until we have N batches and
construct the (1− α)-CI for Z ′N . We then reject the null hypothesis if 0 is outside the

2.6 Conclusions and Discussion 51

CI. If so, accept H+1 if Z ′N > 0 and H−1 otherwise. This procedure forms the basis
of the fixed sample size test for statistical model checking proposed in Section 6.3
of [117] (see also the discussion of the Gauss test at the end of Section 2.2.1), and
this test is then generalised to settings in which the Markov chain consists of more
than one strongly connected component.

When we try to use a sequential test, the question is to what extent we can apply
the sequential tests discussed previously in this chapter. Clearly, Z ′N is longer the
sum of random variables defined by (2.1), so the SPRT and Bayes test will not work
in this situation. However, we have approximate normality if k is large enough,
which means that we can apply the Darling test under the assumption that the steps
are normal. If, following the application of the Darling test, a normality test such
as the Shapiro-Wilk test [52] fails to reject normality, we can a posteriori conclude
that the test went well. Also, Z ′N − Z ′n−1 is bounded so the Azuma test can also be
applied. The only issue then is the independence of the steps - this can also be tested
a posteriori using a test such as the Spearman correlation test [52]. The remaining
problem is then the selection of the batch size b [70], for which we have no formal
algorithm.

For the other main method, called the regenerative approach, it is also possible to
construct a process Z ′′N that fits in the framework of Section 2.1.16 However, in this
case we do not have any information about the probability distribution of the step
sizes Z ′′N − Z ′′N−1 so the Darling test, for which we need this knowledge, will not
work. As they are not even bounded, the Azuma test will also not work.

As for other existing sequential tests for steady-state properties, we mention
the tests proposed in [37] and evaluated in [36]. This test avoids the problem of
warming up the simulation (called the burn-in time in these papers) by using perfect
simulation [86] to sample directly from the steady-state distribution v. Perfect sim-
ulation (also called coupling from the past) is a technique that can be applied when
the Markov chain satisfies one of several technical conditions — the most common
being monotonicity — that imply that samples can be drawn from the steady-state
distribution within finite time. In this way, tests that requires that the samples are
drawn from a random variable with a Bernoulli distribution (e.g., the SPRT) can be
applied. However, in [36] monotonicity is required for the test to be applicable, and
this property does not hold for many models and if it does, it is non-trivial to prove.
Furthermore, the dependence of the runtime of the method on the size of the state
space (a “functional” dependence cf. [36]) is unclear.

2.6 Conclusions and Discussion

We have presented a common framework that allows the methods proposed ear-
lier in the statistical model checking literature to be compared in a mathematically

16The idea behind this method is to repeatedly simulate regeneration cycles that start and end when a
predetermined regeneration state is entered. The process Z′′N can then be defined as the ratio between
the time spent in Φ during the first N regeneration cycles and the total time spent during the first N
regeneration cycles. For more information, see [117].

52 2. SEQUENTIAL HYPOTHESIS TESTING

solid, yet intuitive manner. Previously, when these methods (e.g., the SPRT and the
Chernoff test) were built into model checking tools such as PRISM and UPPAAL,
they were often implemented completely parallel to one another with little informa-
tion given about the subtle differences between the methods and their parameters.
We believe that our contribution aids the general understanding of these methods,
reducing the likelihood of interpretative errors.

We have also introduced two tests for statistical model checking, the Azuma test
based on new analysis and the Darling test based on a power one test introduced
in [28]. We compared the performance of these tests to the four most prevalent ex-
isting tests in the literature. The appeal of the two new tests is their safety: neither
their correctness nor their power depends on parameters that require (correct) prior
information about the system model. Also, the new tests do not have the SPRT’s
fundamental shortcoming that it will not be clear from the result of the test whether
the assumptions of the test have been valid. Hence, a good guess for the true prob-
ability is only needed for efficiency, in particular for the Azuma test. The efficiency
of the Darling method is fairly insensitive to the guess.

The two new tests constitute a powerful addition to the toolset of the investi-
gator who is uncertain about which parameters to give as input to her statistical
model checker. If the investigator has a good reason to choose a certain indiffer-
ence level and believes the actual value |π − π0| to be close (say, up to two orders of
magnitude) to this indifference level, then the SPRT remains her method of choice.
In all other cases, she is faced with the possible loss of efficiency or, even worse,
correctness. The two new tests provide safe and solid alternatives. A single fixed
sample size test of course remains possible if one is willing to accept the risk of a
inconclusive outcome.

Furthermore, the Azuma test is motivated by Theorem 2.1, which can be ap-
plied to any random walk. Clearly, when model checking P>π0(φ) the samples
drawn form a random walk, but there are other settings in which Theorem 2.1 can
be applied. Using Theorem 2.1 we proposed a sequential test for model checking
the steady-state operator S>π0

(Φ), although this test still requires the batch size to
be chosen as a parameter.

2.6.1 Hypothesis Testing for Importance Sampling

While this chapter has been about hypothesis testing, the next four chapters are
about importance sampling. It is an obvious question to ask how these topics con-
nect. As mentioned in the introduction, in the following chapters we primarily con-
cern ourselves with making quantitative statements, meaning that we demonstrate
how to efficiently estimate the probabilities of interest using importance sampling
(see Section 1.3). Given such an estimate, we use the CLT to construct a confidence
interval (CI) as given either in (1.4) or (1.6). Note that in this setting we have to use
the CLT to construct a CI because we typically have no idea about the probability
distribution of the likelihood ratios of the sample paths as defined in (1.8). Using
the CI we can carry out the Gauss test, although the CI is only an approximation,

2.6 Conclusions and Discussion 53

the quality typically depending on the change of measure. The Chernoff-Hoefding
bound can only be applied to construct a true confidence interval if the likelihood
ratios are upper bounded — only in this case can we also apply the Chernoff test.
The fact that we have no information about these distributions also rules out the
Darling test, the Bayes test and the SPRT. Hence, the only sequential test of the ones
discussed in this chapter that can be applied to importance sampling estimators is
the Azuma test, again, if the likelihood ratios can be upper bounded.

In this context we mention [11], in which a change of measure is proposed in
which the likelihood ratios are indeed bounded. However, the application of the
technique of this paper requires that a model is found that is coupled to the original
model and which is then proved to satisfy a technical property (i.e., being a so-
called reduction of guaranteed variance). However, as with the monotonicity that is
required to apply the test of [37] (which is also based on coupling), proving this
condition is non-trivial.

For the changes of measure that we consider in the rest of this thesis, it will not
hold that the likelihood ratios are bounded. However, if we can upper bound the ef-
fect of a single transition on the likelihood ratio (which is a reasonable assumption
in many settings where the behaviour of the model is given through a high-level
description language), then we could apply the following procedure: sample using
importance sampling until the likelihood ratio has become so large that the follow-
ing transition could raise it above some given upper limit. In this case we stop
simulating under importance sampling and continue using standard Monte Carlo.
This need not have a big effect on the efficiency of the IS-estimator; as we discuss
in the remainder of this thesis, our IS-methods work by increasing the likelihood
of sampling paths that are dominant in some sense, and when transitions are drawn
that correspond to behaviour along the dominant paths the likelihood ratio will de-
crease. This idea has however not been fully explored and hence remains a subject
for further research.

54 2. SEQUENTIAL HYPOTHESIS TESTING

CHAPTER 3

Rarity Regimes in the Birth-Death Process

Chapter 3 is the first of four chapters on rare event simulation using importance
sampling, with the specific focus of this chapter being on the model class of (par-
allel) birth-death processes. The limited scope of this class allows for an easy and
intuitive explanation of the core concepts of rarity regimes and dominant paths. A rar-
ity regime is a combination of parameters and corresponding limiting values such
that if the parameter values approach their limits, the probability of interest goes
to zero and — importantly — that in the increasingly unlikely case that an event of
interest occurs, the way in which it happens will increasingly resemble asymptotic
behaviour. The dominant paths in a rarity regime are the paths that come to domi-
nate the event of interest probabilistically, i.e., the total probability of the dominant
paths approaches the probability of interest in the limit associated with the rarity
regime.

The dominant paths are of great interest to us if we want to use importance
sampling. After all, the importance sampling approach described in Section 1.3.5
requires that we substitute an approximation for the probability of interest in each
state into (1.12) or (1.13), yielding an importance sampling change of measure. If
the dominant paths come to dominate the probability of interest, a good approxima-
tion for the probability of interest from a state x is the probability of the dominant
paths from x. Birth-death processes are a good model class with which to illustrate
this approach because the dominant paths in this model class have a simple form
for several important regimes, as we will see later in this chapter. Despite the lim-
ited scope of the birth-death process as a modelling class, it includes well-known
benchmark cases such as the M/M/c queueing system [46] and reliability models
consisting of independent component types.

In this chapter we present a variety of results. We present an overview of per-
formance measures and rarity regimes commonly used in the rare event simulation
literature, and discuss their meaning in the context of the birth-death process. Fur-
thermore, we zoom in on a specific regime that is relevant in the setting of Markov
reward models and discuss how efficient simulation of sojourn times in the states
of the Markov chain in this setting is different from settings for which forcing (as
discussed in Section 1.3.4) suffices — we then present a simulation algorithm that
works well in this setting. Also, this section serves as a prelude to Chapter 4, in
which we consider networks of birth-death processes and which uses several of the
performance measures and rarity regimes discussed in this chapter.

56 3. RARITY REGIMES IN THE BIRTH-DEATH PROCESS

The outline of this chapter is as follows. In Section 3.1 we introduce the birth-
death process, discuss the main performance metrics and explain the concept of a
dominant path. In Section 3.2, we highlight the parameter settings in which the
performance metrics start to involve rare events, and discuss the impact of the dif-
ferent regimes on the simulation procedure. In Section 3.3 we focus on drawing
sojourn times in a pure birth process in the rarity regime of Section 3.2 (i.e., ‘large
mission times’). Section 3.4 concludes the chapter.

3.1 The Birth-Death Process

The birth-death process is a stochastic process defined on a one-dimensional state
space such that in all states there are at most two transitions possible: one to the
right (the ‘birth’) and one to the left (the ‘death’). As the name suggests, the birth-
death process is a widely used formalism for population models used in fields such
as biology [82] and demography, but it has applications in many more other areas,
e.g., queueing theory and performance analysis. In Section 3.1.1, we give a formal
definition of a birth-death process as a CTMC and explain several real-world inter-
pretations. In Section 3.1.2, we discuss several performance measures that are of
interest in a birth-death process. In Section 3.1.3 we discuss the dominant paths in
a birth-death process.

3.1.1 Definition
The birth-death process is a CTMC with state space X = (xi)i∈N and at most two
transitions enabled in each state: the λ-transition which takes a state xi to xi+1

∀i ≥ 0, and the µ-transition which takes a state xi to xi−1 ∀i ≥ 1. The rates can
be state-dependent, meaning that the λ-transition has rate λ(x) ≥ 0 in state x and
the µ-transition has rate µ(x) ≥ 0 in state x. A depiction of a birth-death process is
given in Figure 3.1.

xa

x0

x1 x2 x3 . . . xn−1 xn
λ

λ
λ λ λ λ λ

µ
µ µ µ µ µ

Figure 3.1: An M/M/1/n queue [46], depicted as a CTMC. The initial state is x0; since
we are often interested in events involving a return to the initial state, we duplicate x0

and make it an a-state (the result is xa). The buffer overflow state xn is a goal state.

The interpretation of the state and the transitions depends on the application set-
ting. In a biological setting, the birth-death process is a population model in which
the state is the number of living organisms, and where the λ-transition represents
the birth and the µ-transition represents the death of an organism. In queueing, the

3.1 The Birth-Death Process 57

state of the process is the number of customers in the queue or the system and the
λ-transition represents an arrival and the µ-transition the completion of service or
departure of a customer. In applications in reliability engineering, the state is the
number of active or spare components of a type — the λ-transition then represents
the failure and the µ-transition represents the repair of a single component.

Typically, the rates of the λ-transition are (much) lower than those of the µ-
transition, especially for states to the ‘right’, i.e., xi with large values of i.17 As a re-
sult, the rightmost states are not visited often and we are interested in (rare) events
involving these states. To formalise these events, let there be some constant n ∈ N
such that xn and all states to the right of it be b-states. We let x0 be the initial state; if
we are interested in events involving a return to the initial state, we add an a-state
xa to which all the transitions to x0 are routed. The performance measures usually
involve some probability that becomes smaller as it becomes less likely to reach the
goal set when one or more parameters attain increasingly extreme values.

Note that we can view the birth-death process as an instance of a stochastic Petri
nets (SPN; see Section 1.1.3), with one place and two transitions. In a reliability
setting, the number of tokens then represents the number of broken components
and the two transitions represent component failures and repairs respectively.

3.1.2 Performance Measures
We focus on three performance measures that are commonly used in reliability en-
gineering, and discuss all of them in the context of a single birth-death process. The
first is the (transient) unreliability, the probability of hitting xn before some fixed
time bound τ̄ . The second is the conditional unreliability, the probability of hitting xn
before the taboo state xa. The third is the unavailability, the steady-state probability
of being in a goal state.

The (Transient) Unreliability

The first performance measure that we discuss is the unreliability, although it is
the most challenging one from a theoretical point of view. The reliability is a time-
bounded measure such that a system is highly reliable according to this measure
if it is unlikely that the system breaks down within some given execution period.
We assume that the system is highly reliable, making the unreliability a rare event
probability. We distinguish three main variants.

• The first is the most common one, namely the probability of observing a goal
state before time τ̄ (the mission time). This is written in CSL (see Section 1.1.2)
as ♦[0,τ̄]b.

• Second we have the probability of observing ψτ̄ , the event of hitting a goal
state before the taboo state and before time τ̄ , written in CSL as ¬aU [0,τ̄]b.
Because we have explicitly defined xa in birth-death processes to be different
from the initial state this is not the same as ♦[0,τ̄]b.

17This is also necessary for the steady-state distribution to exist.

58 3. RARITY REGIMES IN THE BIRTH-DEATH PROCESS

• Finally, one could be interested in the probability of the rare event that the sys-
tem breaks down only after the mission time has passed. It may be counter-
intuitive to say that this probability is low in a highly reliable system, but
this setting has applications in Markov reward models as we explain in Sec-
tion 3.2.4 (this section is also the only section in which this property is further
considered). In CSL, this is written as ¬bU (τ̄ ,∞)b.

In the remainder of this subsection we focus on P(ψτ̄) for the sake of brevity. Note
that in the setting of ψτ̄ we can make the states xa and xb absorbing, which they are
not in Figure 3.1.

All probabilities discussed previously can be expressed by the distribution func-
tion of a phase-type distributed random variable. The easiest way to write distri-
bution functions of this form is by using a matrix exponential [39]. We give its form
explicitly as we need it for future reference: with η(x) , λ(x) + µ(x), we write the
generator matrix of the birth-death process as(

S λ
0 0

)
, (3.1)

with 0 =
(
0 · · · 0

)
, λ =

(
0 · · · 0 λ(xn−1)

) T and where

S ,

0 0 0 0 0 · · · · · · · · · 0
0 −λ(x0) λ(x0) 0 0 · · · · · · · · · 0

µ(x1) 0 −η(x1) λ(x1) 0 · · · · · · · · · 0

0 0 µ(x2) −η(x2) λ(x2)
. . .

...

0 0 0 µ(x3)
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . . λ(xn−3) 0

...
...

...
. . . µ(xn−2) −η(xn−2) λ(xn−2)

0 0 0 · · · · · · · · · 0 µ(xn−1) −η(xn−1)

.

In S, the first row (and column) corresponds to the (now absorbing) state xa and
the next n rows to x0 to xn−1. There is no row or column that corresponds to xb
in S, but the final row and column in the generator matrix of (3.1) do. With α the
initial distribution given as a (row) vector, i.e., a unit vector with a 1 in the second
entry, and ι a column vector of only ones, the unreliability is then given by

Px(ψτ̄) = 1− αeSτ̄ ι. (3.2)

The idea behind this expression is as follows: with η∗ = maxx∈X η(x), writing down
the Maclaurin series expansion of the matrix exponential yields an infinite sum in
which the ith element corresponds to the Poisson probability that i jumps with rate
η∗ occur within τ̄ time units, multiplied by the transition probability matrix of the
corresponding (uniformised) DTMC to the ith power. Multiplying this from the

3.1 The Birth-Death Process 59

left by α gives the probability distribution over all states in X of being there at
time τ̄ , starting in x0. Multiplying by ι from the right then gives the sum of these
probabilities for all states that do not equal xb, and 1 minus this probability is the
probability of having reached the absorbing state xb within the mission time.

Alternatively, the probability of interest can be written by conditioning on the
sample path and ¬aU b, i.e.,

Px(ψτ̄) =
∑

ω:xω0 =x,
ω�¬aU b

P(ω) · P(ψτ̄ |ω). (3.3)

In this expression, P(ω) is a simple product of transition probabilities and P(ψτ̄ |ω) is
the probability that the sum of a number of exponentially distributed random vari-
ables is smaller (or bigger) than τ̄ . There exist analytical expressions for P(ψτ̄ |ω)
[3], but their numerical evaluation is very cumbersome if the rates are not all equal
or all different. However, one could use approximative techniques such as Gauss-
Seidel (also mentioned in Section 1.1.4) to obtain these probabilities. If the sample
paths typically observed in a simulation run are not too large, a simulation tech-
nique could be to first generate the sample paths and to compute P(ψτ̄ |ω) numer-
ically using iterative methods or to independently estimate this probability using
importance sampling. This will be discussed further in Sections 3.2.3 and 3.2.4.

The Conditional Unreliability

In the setting of a single birth-death process, the conditional unreliability is simply
the probability of hitting a high level before the lowest level — i.e., P(ψ). It is equal
to P(ψτ̄) as discussed in the previous section with τ̄ = ∞. In a queue, this is the
probability of reaching an overflow state before the queue empties, starting from
the empty state. In queueing, the time interval between the arrival of a customer
to an empty queue and the queue again becoming empty is called a busy period,18

and the conditional unreliability is, hence, the probability of reaching a high level
during a single busy period. In a reliability setting, the conditional unreliability is
the probability of seeing a large number of components break down (typically a
number large enough to cause the whole system to fail) before all components are
up again.

The conditional unreliability in xi, i = 2, . . . , n − 1, is given by the recursion
relation

Pxi(ψ) =
λ(xi)

λ(xi) + µ(xi)
Pxi+1

(ψ) +
µ(xi)

λ(xi) + µ(xi)
Pxi−1

(ψ), (3.4)

which together with the conditions Pxa(ψ) = 0, Pxn(ψ) = 1, Px0(ψ) = Px1(ψ) and
Px1(ψ) = λ(x1)

λ(x1)+µ(x1)Px2(ψ) allows the conditional unreliability to be calculated in
each state. When the rates are constant, i.e., λ(x) ≡ λ and µ(x) ≡ µ ∀x ∈ X ,

18Note that in Section 1.2.1 we introduced the notion of a busy cycle, which is the busy period plus the
time spent in the regeneration state. Throughout the remainder of this chapter we use the concept of the
busy cycle as defined in Section 1.2.1.

60 3. RARITY REGIMES IN THE BIRTH-DEATH PROCESS

the calculation of the conditional unreliability is equivalent to the Gambler’s Ruin
Problem (also known as Gambler’s Fortune [99]). This problem has a simple closed
form solution given by

Pxi(ψ) =
(µλ)i − 1

(µλ)n − 1
, ∀i = 1, . . . , n. (3.5)

Substituting this expression into (1.13), one obtains the following expression for the
zero variance transition probabilities:

qxixi+1
=

µi+1 − λi+1

(µ+ λ)(µi − λi)
and qxixi−1

= 1− qxixi+1
∀i = 1, . . . , n.

As noted in [30], the zero variance measure does not depend on n in this case.
When there exist different states x and z such that λ(x) 6= λ(z) or µ(x) 6=

µ(z), we cannot in general know P(ψ) for a single state x without computing it
for all states xi, i = 1, . . . , n− 1. However, we can obtain the zero variance tran-
sition probabilities starting from x1 without further knowledge of all other transi-
tion probabilities. The reason is that for a measure to produce an estimator with
zero variance, it must hold that LQ(ω) is the same for each path ω. As such, for
ω = (xω0 , . . . , x

ω
i , . . . , x

ω
|ω|) and ω′ = (xω0 , . . . , x

ω
i , x

ω
i−1, x

ω
i , . . . , x

ω
|ω|) it must hold that

LQ(ω) = LQ(ω′), which in turn implies that the likelihood ratio caused by the cycle
xωi → xωi−1 → xωi , given by

pxωi xωi−1
pxωi−1x

ω
i

qxωi xωi−1
qxωi−1x

ω
i

,

must equal one. Since it must hold that qx1xa = 0 as there would otherwise be
positive probability of observing a path ω that would not result in the rare event,
qx1x2 can be computed directly. We can then sequentially compute all remaining
zero variance probabilities. Once we are finished, the true probability Pxj (ψ) can
then be computed by

Pxj (ψ) =

n−1∏
i=j

pxixi+1

qxixi+1

,

The Unavailability

The availability is a performance measure given by the long-term average fraction
of time in which the system is operational, i.e., in a state xi such that i < n. In a
highly reliable system, its converse — the unavailability — is a small probability,
namely the steady-state probability of being in a state where the system has failed.
The steady-state probability distribution of the system can be expressed using a
system of equations — solving this system for the birth-death process yields that
the steady-state probability of being in state xi, i = 1, 2, . . ., is given by

v(xi) =
λ(xa)λ(x1) · · ·λ(xi−1)

µ(x1)µ(x2) · · ·µ(xi)
v(xa),

3.1 The Birth-Death Process 61

where v(x) is the steady-state probability of being in state x, and

v(xa) =
1

1 +

∞∑
i=1

λ(xa)λ(x1) · · ·λ(xi−1)

µ(x1)µ(x2) · · ·µ(xi)

(3.6)

(see [74]). However, we do not use this information directly as we use the ratio esti-
mator (1.5), and (3.6) does not trivially lead to zero variance transition probabilities
for estimating the quantities in this expression. Instead, our approach will more
closely resemble importance sampling for the conditional unreliability. The reason
is that of the two quantities that appear in (1.5), only the fraction of time spent in
the goal set during a busy cycle is the one that is hard to estimate. The problem that
we face is that for a typical timed sample path ω the system will not reach the goal
set, meaning that Z(ω) will remain zero. So to estimate this quantity efficiently, we
need to increase the probability of hitting the goal set during a busy cycle, which is
exactly the same problem as for the conditional unreliability.

The procedure will be as follows: we start in the initial state x0 and simulate
using the same importance sampling procedure that we would use for the condi-
tional unreliability. We stop when we reach system failure and from then on simu-
late using the old distribution until we reach the regeneration state, namely xa [50].
Meanwhile, we record the amount of time during which the system was in a failed
state.

We note here that it is typically not a good idea to use the same change of mea-
sure for both E(Z) and E(D). For example, if we use zero variance approximation
based on (1.13), then the paths that immediately fall back to the regeneration state
xa before reaching a system failure state are not sampled because w(xa) ≡ 0 for any
reasonable approximation w. This has no effect on the unbiasedness of the estima-
tor ẑ because paths that immediately fall back to the regeneration state contribute
nothing to E(Z). However, they do contribute heavily to E(D). Therefore, to avoid
bias and inconsistency in d̂ we generate two series of runs, one for Z with impor-
tance sampling and one for D without importance sampling [45], and substitute
them into (1.5).

3.1.3 Straight Paths and Cycles
As defined in the introduction of this chapter, the dominant paths are those paths
for which it holds that the probability of interest approaches the sum of the proba-
bilities of the dominant paths in the limit associated with a given rarity regime. Of
course, the structure of this set depends on the chosen rarity regime, to be discussed
in Section 3.2. However, in most of the rarity regimes the dominant paths have a
similar form.

The first obvious candidate for a dominant path in the birth-death process is the
straight path, which from state xi is given by (xi, xi+1, . . . , xn−1, xn). In this setting,
the straight path is the most likely path and certainly a dominant path. However,
as we will see in Chapter 4, in a network of d parallel birth-death processes, there

62 3. RARITY REGIMES IN THE BIRTH-DEATH PROCESS

are d straight paths from any state outside the goal and taboo sets to the goal set
(assuming the non-trivial case where in the ith isolated birth-death process the rates
are such that with positive probability the ith element of ~x eventually reaches ni). In
this setting the straight path need not be the most likely path— e.g., a path that first
falls back to xa by observing deaths in the ith process and then reaches overflow
through births in the jth process, i 6= j, may be more likely than the straight path
in which there are only births in the ith process. This will all be explained in more
detail in Chapter 4

In a single birth death process, all paths that are not the straight path contain
cycles. A cycle is in itself a path, but one which begins and ends in the same state,
i.e., a path (xω0 , x

ω
1 , . . . , x

ω
|ω|) such that xω0 = xω|ω|. As we will see in Section 3.2.2 (and

in Chapter 4), some paths that contain cycles will also be dominant paths, even if
they are never the most likely.

3.2 Rarity Regimes in the Birth-Death Process

Having discussed the straight paths, the main question is whether they are domi-
nant, and if so, in which asymptotic setting. As such, the focus of this section is on
the different rarity regimes in a birth-death process and the effect of these regimes
on the typical way in which rare events occur. Formally, we define a rarity regime
to be any asymptotic regime in which the probability of interest goes to zero.

We note here that one can think of an infinite number of rarity regimes, particu-
lar one where several parameters reach extreme values with different speeds (e.g.,
a regime where λ ∼ n2 and n→∞). However, we restrict ourselves to regimes that
are common in the literature and motivate each regime with its interpretation in a
reliability setting. Furthermore, it may be possible to simulate a regime involving
one or more parameters by manipulating other parameters, e.g., for the conditional
unreliability λ ↓ 0 and µ→∞ are equivalent.

In this section, we largely intend to provide an intuitive description of the dif-
ferent rarity regimes. As such, some statements that could be made mathematically
precise are not. We only discuss the setting where the repair rates and the failure
rates are equal in all states (except x0, in which repairs are not allowed).

3.2.1 The Regimes λ ↓ 0 and τ̄ ↓ 0 (Slow Component Failures)
We begin with the setting λ ↓ 0 (slow component failures) because the behaviour
observed in this setting is similar to the behaviour observed in the models of Chap-
ters 5, 6 and 7. Furthermore, we argue that in the time-bounded setting (involving
the unreliability), the behaviour observed in the regime of τ̄ ↓ 0 is similar in the
sense that the straight path is the sole dominant path in both settings. We first
discuss the conditional unreliability and then the unreliability.

For the conditional unreliability (i.e., P(ψ)), it holds in this regime that the straight
path is not just dominant, but that it by itself comprises the entire set of dominant
paths. To see this, note that the probability of the straight path state ωi from xi is

3.2 Rarity Regimes in the Birth-Death Process 63

given by (λ/(λ+ µ))n−i, and that the true probability P(ψ) is given by (3.5). The
ratio P(ωi)/P(ψ) equals (

µ

λ+ µ

)n
−
(

λ

λ+ µ

)n
(

µ

λ+ µ

)i
−
(

λ

λ+ µ

)i
which goes to 1 as λ goes to zero. The intuition behind this is that all other paths
contain cycles in the ‘interior’ (i.e., somewhere between x1 and xn−1), and as these
cycles contain the transition with rate λ their probability vanishes as λ ↓ 0. Hence,
for small values of λ the probability of the straight path is a very good approxi-
mation for the true probability, and can be expected to produce an estimator with
decent performance. We will see in Chapter 5, which also tackles this problem in a
much more general setting, that this approximation in fact produces an estimator
with the very desirable property of vanishing relative error.

For the unreliability we distinguish between ¬aU [0,τ̄]b and ♦[0,τ̄]b. In the former
setting, we can use the decomposition (3.3); in this expression it is clearly visible
that if the time bound is so large that P(ψτ̄ |ω) = 1 we are back in the setting of the
conditional unreliability. Note that, since all exit rates are equal in the relevant part
of the state space, P(ψτ̄ |ω) has an Erlang distribution with rate λ + µ ≈ µ and its
shape parameter equal to the number of steps needed for ω. For the straight path
ω0, which was already the only dominant path in the setting of the conditional un-
reliability, P(ψτ̄ |ω0) is higher than the related probability of all other paths, meaning
that in this setting it remains the only dominant path.

In the setting ♦[0,τ̄]b we start in x0, jump to x1 with probability one, and from x1

it is possible to jump to state xa. Note that in xa, the probability of jumping to x1

is 1. Hence, the probability of the cycle (x1, xa, x1) does not vanish asymptotically
(in fact, it converges to one). However, the exit rate of state xa equals λ instead of
λ + µ, so the probability of leaving xa before the time bound τ̄ has passed goes to
zero. Hence, both paths with cycles in the interior and with cycles that go through
xa have vanishing probability, so the straight path is the only dominant path.

As is obvious from (3.2), multiplying τ̄ by a constant is the same as multiplying
λ and µ by the same constant. The regime τ̄ ↓ 0 (short mission time) is hence the
same regime as previously, with the exception that µ decreases by the same rate.
The result is that the probability of cycles does not vanish asymptotically. However,
the exit rate of not just the initial state but that of all states decreases. Hence, in the
limit of τ̄ ↓ 0 the path with the smallest number of steps will be dominant. The
unique path with the smallest number of steps is the straight path.

Note that when the exit rate of a state vanishes asymptotically, drawing the so-
journ time in this state using importance sampling (e.g., using forcing as described
in Section 1.3.4) can lead to large gains in terms of estimator performance. We will
discuss forcing techniques in greater detail in Sections 3.2.2 and 3.2.4.

64 3. RARITY REGIMES IN THE BIRTH-DEATH PROCESS

3.2.2 The Regime µ→∞ (Fast Component Repairs)

The second regime that we discuss is µ → ∞ (fast component repairs), which will
be the focus of Chapter 4 (albeit for networks of parallel birth-death processes). For
the conditional unreliability, it holds that this regime is completely equivalent to
λ ↓ 0; after all, the gambler’s ruin probabilities as given in (3.5) depend only on the
ratio µ

λ . Hence, the analysis of the previous section holds and the straight path is
the only dominant path. For the unreliability of ¬aU [0,τ̄]b we observe that the exit
rates of the states in the ‘interior’ do not converge to µ, as is the case for λ ↓ 0, but to
∞. Hence, probability of completing each finite path before τ̄ goes to one, meaning
that the time aspect of this setting ceases to be important. As a result, this setting is
the same as the setting of the conditional unreliability discussed previously.

In the setting of♦[0,τ̄]b, we again have that the probability of cycles in the interior
vanishes, but the probability of the cycle (x1, x0, x1) does not. Furthermore, the
exit rates in x0 and x1 do not go to zero. Hence, starting from x0, the path that
jumps to x1, falls back to x0 and then takes the straight path to xn does not vanish
asymptotically, and is by implication part of the set of dominant paths. This will be
discussed further in Chapter 4.

3.2.3 The Regime n→∞ (Many Spares)

The regime n→∞ (many spares) is the odd one out in this section as the structure
of the relevant state space changes as the parametric setting progresses towards
the extreme values associated with the regime. Hence, the straight path from x0 to
~xn is not the same for different values of n. While this regime can be interpreted
in a reliability framework as the situation in which system failure is rare because
the number of spare components is overwhelming, it is more common to see this
regime analysed in a biological, chemical or queueing context. There exists vast
literature on results for this regime based on, e.g., large deviations theory and fluid
limits. While we give some elementary results concerning the dominant paths in
this setting, this regime has no further focus in this thesis. We do note that this
regime is very challenging from a computational point of view, as the state space
explosion problem becomes worse in this setting.

For the conditional reliability, it holds that the gambler’s ruin probabilities of
(3.5) grow ever closer to (λµ)n−i as n goes to infinity. The straight path, with proba-
bility (λ

λ+µ)n−i, does not come to dominate the true probability by itself; in fact, its
relative contribution vanishes in the limit. Substituting (λµ)n−i for w(xi) into (1.13)
instead of the straight path probability, we obtain a change of measure in which λ
and µ are interchanged. This change of measure is well-known in the literature [84]
and can be shown to have several nice properties, including BRE (see Section 1.3.3).
One especially nice property of this change of measure is the fact that the likelihood
ratio resulting from a cycle equals 1, so that a single run of the simulation procedure
either returns 0 or a constant, namely (λµ)n−i (see also [62]).

For the unreliability, it holds that as n increases, it becomes increasingly unlikely

3.3 The Regime τ̄ →∞: Fast Simulation for Slow Paths 65

to complete even the straight path before the time bound τ̄ . We state here as a
conjecture that in this setting, the straight path by itself again comes to dominate
the probability of interest. The reason is that as n increases, the relative likelihood of
completing n+ 1 exponentially distributed time steps compared to the completion
of n exponentially distributed time steps goes to zero. While this may be interesting
from a theoretical point of view, we are unaware of case studies in which the rarity
of the event of interest stems from the fact that there are so many spares that is
unlikely that these spares all fail within the mission time.

3.2.4 The Regime τ̄ →∞ (Large Mission Time)

As mentioned in Section 3.1.2, the regime τ̄ →∞ is the only one for which we con-
sider the property ¬bU (τ̄ ,∞)b rather than ¬aU [0,τ̄]b and/or ♦[0,τ̄]b. The motivation
for this regime comes from Markov reward models where the event of interest is
“collecting sufficient reward before absorption”. This problem can be shown to be
equivalent [5] to the problem of estimating P(¬bU (τ̄ ,∞)b).

When the amount of time that needs to be spent before the goal set is reached
increases, it becomes increasingly likely that this rare event occurs when states that
have a very low exit rate are visited often. In Section 3.3, we argue that, given a
timeless execution path ω, when τ̄ increases, the fraction of time spent in the state
with the lowest exit rate in ω will go to one — assuming this state is unique. If
there are k states with the lowest exit rate in a path, then it seems reasonable that,
as τ̄ increases, τ̄ /k time units will come be spent in each of these states. In a birth-
death process, the state with the lowest exit rate is xa, so taking the loop (x1, xa, x1)
will become increasingly attractive as τ̄ increases. However, it is unclear what the
dominant paths are in this situation (if they even exist). We state here as a conjecture
that the optimal change of measure for drawing sample paths in this setting will not
be Markovian; that it will initially take the loop (x1, xa, x1) with high-probability
but that the probability of taking this loop decreases each time it is taken.

While the problem of drawing sample paths is certainly hard, the problem of
drawing sample times given a sample path is already non-trivial, as we will see in
Section 3.3 (which is the only other section in which the regime τ̄ → ∞ and the
probability P(¬bU (τ̄ ,∞)b) will be discussed).

3.3 The Regime τ̄ →∞: Fast Simulation for Slow Paths

In this section, we zoom in on efficient simulation for the regime τ̄ → ∞. As we
argued in Section 3.2.4, the dominant paths for the regime τ̄ → ∞ in birth-death
processes have no easy shape and need not even exist — hence, basing a change
of measure on the dominant paths is impossible. However, given a good change of
measure for the timeless paths, it is possible to construct a well-performing change
of measure for the sojourn times in the states of the drawn sample paths. In fact,
for estimating the probability P(¬bU (τ̄ ,∞)b) in any CTMC, we can use the following
two-step approach: in the first step of each simulation run, the simulator samples a

66 3. RARITY REGIMES IN THE BIRTH-DEATH PROCESS

timeless path through the state space, and in the second step it samples the sojourn
times for that path.

In this section, we specifically present work concerning the second subproblem:
to estimate, given a sample path, the probability that it takes more than τ̄ time
units to complete this path. We derive an efficient importance sampling simulation
algorithm for it, drawing sojourn times from a distribution that closely resembles
the conditional distribution given the rare event of interest.

In Section 3.3.1, we study the conditional distribution of the sojourn times. In
Section 3.3.2, we describe our simulation algorithm. In Section 3.3.3, we provide
some numerical experiments.

3.3.1 Conditional Sojourn Times

As noted above, we assume that a path ω through a CTMC is already given, con-
sisting of n states x1, . . . , xn; only the sojourn times in the states on this path are
unknown, but the rates of the states are given as λ1, . . . , λn, some of which may
be identical. As mentioned earlier, this path can be seen as a pure birth process,
as depicted in Figure 3.2. We now proceed to analyze the behaviour of the sojourn
times Tj in the individual states j of this path, conditional on absorption occurring
after some time bound τ̄ . The results of this section will be used later to obtain an
efficient simulation algorithm.

The probability density of the sojourn time Tj is given by fj(x) = λje
−λjx, but

we are interested in the distribution of Tj conditional on occurrence of the event
T > τ̄ , where T ,

∑n
j=1 Tj . Considering without loss of generality j = 1, we

condition on the value of T1 to find

P(T1 > t|T > τ̄) =

∫ ∞
t

f1(t1)

P (T > τ̄)
P (T − T1 > τ̄ − t1) dt1,

hence

f1(t|T > τ̄) =

f1(t)

P (T > τ̄)
P(T − T1 > τ̄ − t) if t < τ̄ ,

f1(t)

P (T > τ̄)
otherwise.

(3.7)

This expression contains the probability P (T > τ̄) which we are trying to estimate.
Therefore our goal is now to obtain insight into the behaviour of f1(t|T > τ̄) for
large τ̄ so we can construct a good approximation for P(T > τ̄) in the next section.

. . .
λ1 λ2 λn−1 λn

Figure 3.2: Path ω, seen as a pure birth process.

3.3 The Regime τ̄ →∞: Fast Simulation for Slow Paths 67

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8

f 1
(t
|T
>
τ̄
)

t

λ1<λ2

λ1=λ2

λ1>λ2

Figure 3.3: f1(t|T > τ̄) for different parameter values λ1 and λ2, with τ̄ = 5. Solid line:
λ1 = 2.4, λ2 = 2. Dotted line: λ1 = 2.2, λ2 = 2.2. Dashed line: λ1 = 2, λ2 = 2.4.

We start by making (3.7) explicit for a two-state path ω = (x1, x2) with rates λ1

and λ2, λ1 6= λ2. Then

f1(t|T > τ̄) =

λ1e
−(λ1−λ2)t

λ1

λ1−λ2
+ λ2

λ2−λ1
e−(λ1−λ2)τ̄

if t < τ̄ ,

λ1e
−λ1t

λ1

λ1−λ2
e−λ2τ̄ + λ2

λ2−λ1
e−λ1τ̄

otherwise.
(3.8)

Note that the same expression holds for f2(t|T > τ̄) after interchanging λ1 and λ2.
The shape of this function for t > τ̄ is always exponential with rate λ1. However,

the shape of the part where t < τ̄ depends on the parameter setting, where we
distinguish three cases. For λ1 > λ2, this part is still negative exponential albeit with
a different parameter, namely λ1 − λ2. However, for λ1 < λ2, this part is positive
exponential, again with parameter λ1− λ2. In between, as λ1 and λ2 become equal,
this part approaches a constant. This is illustrated in Figure 3.3. With the same
parameters, in Figure 3.4, the time bound τ̄ was increased sixfold, illustrating the
limit behaviour of the system for large τ̄ . For λ1 > λ2 we see that the probability
mass right of τ̄ vanishes, so we can approximate the function (3.8) by a simple
exponential density with rate λ1 − λ2.

It is also interesting to observe how the expected share of the burden of consum-
ing τ̄ time units is distributed over the states. One easily derives the following
from (3.8):

E(T1|T > τ̄) ∼

τ̄ if λ1 < λ2

τ̄ /2 if λ1 = λ2

(λ2 − λ1)−1 if λ1 > λ2,

with ∼meaning that the ratio of left- and right-hand side goes to 1 as τ̄ →∞. This
is illustrated in Figure 3.5. We see that when the rates differ, almost all of the time τ̄
is typically spent in the state with the lowest rate, while the time spent in the other
state tends to a constant.

68 3. RARITY REGIMES IN THE BIRTH-DEATH PROCESS

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40

f 1
(t
|T
>
τ̄
)

t

λ1<λ2

λ1=λ2

λ1>λ2

Figure 3.4: Same choices for the values of the parameters λ1 and λ2 as in Figure 3.3, but
with τ̄ = 30.

It seems reasonable to assume that these core observations do not just hold for two-
state paths but for any path ω. Denote the lowest rate by β1 and the second-lowest
by β2, and let ri be the number of times rate βi occurs on the path. Then, in the
limit for large τ̄ , a state i whose rate λi 6= β1 will contribute only an exponentially
distributed amount of time with the bounded mean (λi − β1)−1. If r1 = 1, then
the single state with rate β1 will account for an amount that has an asymmetric
Laplace distribution peaking at t = τ̄ with rates β2 − β1 on the left side and β1 on
the right side. If there are r1 > 1 states with rate β1, then the expected contribution
of each of these states is τ̄ /r1, and the conditional sojourn time in each state has an
exponential distribution with rate β1 to the right of τ̄ , but a polynomial density with
degree r1 − 2 left of τ̄ .

3.3.2 Simulation

We now proceed to construct an efficient simulation estimator for our probability
of interest, namely π = P(T > τ̄) given a path ω. The standard simulation estimator

0

2

4

6

8

10

0 5 10 15 20

Ex
pe

ct
ed

so
jo

ur
n

ti
m

e

Time bound τ̄

in
sta

te
1,

with
λ 1

=
2

in state 2, with λ2=2.4

Figure 3.5: Expected sojourn times as a function of τ̄ .

3.3 The Regime τ̄ →∞: Fast Simulation for Slow Paths 69

for π is

π̂ =
1

N

N∑
i=1

1∑
j tij>τ̄

, (3.9)

where tij is the sampled sojourn time (with density fj(t)) for state j in the ith simu-
lation run,N is the number of simulation runs, and 1 the indicator function. Impor-
tance sampling in this setting boils down to the following: we draw the samples tij
from a different density gj(t) and weight the result using the following likelihood
ratio:

π̂∗ =
1

N

N∑
i=1

n∏
j=1

fj(tij)

gj(tij)
1∑

j tij>τ̄
, (3.10)

Since the exact calculation of fj(t|T > τ̄) is problematic is general, we propose to
use the following approximation instead, inspired by the findings in the previous
section:

gj(t) =

(λj − β1) · e−(λj−β1)·t if λj > β1

r1/τ̄ · e−r1/τ̄ ·t if λj = β1 and r1 = 1

h(t|β1, β2) otherwise,
(3.11)

with βi and ri defined as before, and h(t|β1, β2) is given by the right-hand side
of (3.8) with each λi replaced by βi.

In practical applications where the CTMC is not a pure birth process, the above
algorithm for each simulation run i should be preceded by a phase in which the
path itself (i.e., the set of states) is sampled, possibly also using importance sam-
pling (cf. the two-phase approach discussed in the beginning of the section).

3.3.3 Simulation Results

In this section we empirically demonstrate the effectiveness of the method. We
compare standard Monte Carlo (MC) simulation using (1.3) to the new importance
sampling (IS) approach using (3.10) and (3.11). In each table, the estimates are given
in the column ‘π̂’ and the bounds of the 95%-confidence interval (CI) are given in
the next column. Throughout this section, all results are based on 107 simulation
runs for MC and 105 simulation runs for IS — this is shown in the column ‘N ’ in
the tables for emphasis. In all cases, we also include a numerical approximation for
π, obtained using the model checking tool PRISM. It is shown in the column ‘π’ in
the tables.

In Table 3.1, we consider a two-state path ω with unequal rates. We see that the
method works well; the very slow increase of the confidence interval width as τ̄
increases suggests the relative error is in fact upper-bounded (implying the BRE-
property, see Section 1.3.3).

In Table 3.2, we set λ1 = λ2. The results are still good but somewhat less accu-
rate, which can be explained by the poor resemblance between g1(t) and f1(t|T > τ̄)
for t < τ̄ .

70 3. RARITY REGIMES IN THE BIRTH-DEATH PROCESS

τ̄ method π̂ 95%-CI-bounds N π (PRISM)

5
MC 2.541·10−4 ± 0.099·10−4 10 000 000

2.4168·10−4

IS 2.367·10−4 ± 0.048·10−4 100 000

7
MC 5.3·10−6 ± 1.4·10−6 10 000 000

4.7363·10−6

IS 4.833·10−6 ± 0.115·10−6 100 000

9
MC 3·10−7 ± 3·10−7 10 000 000

8.9299·10−8

IS 9.133·10−8 ± 0.248·10−8 100 000

100
MC — — 10 000 000

8.3034·10−87

IS 8.191·10−87 ± 0.824·10−87 100 000

Table 3.1: Simulation results for estimating P(T > τ̄) in a path as depicted in Figure 3.2
with two states, λ1 = 2, λ2 = 2.4.

τ̄ method π̂ 95%-CI-bounds N π (PRISM)

5
MC 2.015·10−4 ± 0.088·10−4 10 000 000

2.0042·10−4

IS 2.011·10−4 ± 0.037·10−4 100 000

7
MC 2.8·10−6 ± 1.0·10−6 10 000 000

3.3629·10−6

IS 3.347·10−6 ± 0.075·10−6 100 000

100
MC — — 10 000 000

6.3039·10−94

IS 6.638·10−94 ± 0.578·10−94 100 000

Table 3.2: Simulation results for estimating P(T > τ̄) in a path as depicted in Figure 3.2
with two states, λ1 = λ2 = 2.2.

Finally, in Table 3.3 we show results for a path with 50 states and 25 different rates.
Note that direct (analytical) calculation of the true probability is not numerically
feasible in this case, so we have to resort to either iterative numerical techniques
such as the ones implemented in PRISM or simulation-based methods.

τ̄ method π̂ 95%-CI-bounds N π (PRISM)

12
MC 2.099·10−2 ± 0.009·10−2 10 000 000

2.0282·10−2

IS 2.054·10−2 ± 0.033·10−2 100 000

24
MC 7·10−7 ± 5·10−7 10 000 000

3.9616·10−7

IS 4.000·10−7 ± 0.099·10−7 100 000

100
MC — — 10 000 000

2.0867·10−39

IS 2.104·10−39 ± 0.119·10−39 100 000

Table 3.3: Simulation results for estimating P(T > τ̄) in a path as depicted in Figure 3.2
with fifty states, λi = b i+1

2
c, i = 1, . . . , 50.

Having demonstrated that the method works well for the pure-birth processes for
which it was intended (as the second step of the two-step approach), we also give
an example derived from a Markov-reward model involving an M/M/5/5 queue.
The resulting Markov chain is a birth-death process with 6 states labeled 0, . . . , 5,
with birth rates 0.1 · e5−k in state k = 0, . . . , 4, and death rates k · e5−k in state

3.4 Conclusions 71

k = 1, . . . , 5. We start in 5 and the absorbing state is 0.
Generating appropriate sample paths using standard simulation, and then draw-

ing sojourn times with the algorithm from this section, leads to the results reported
in Table 3.4. These results look promising, with a relative error growing just linearly
in τ̄ . For larger τ̄ , however, generating sample paths becomes more difficult, and
importance sampling will be needed here as well.

τ̄ method π̂ 95%-CI-bounds N π (PRISM)

1
MC 2.455·10−2 ± 0.010·10−2 10 000 000

2.4599·10−2

IS 2.467·10−2 ± 0.042·10−2 100 000

2
MC 2.193·10−4 ± 0.092·10−4 10 000 000

2.0927·10−4

IS 2.161·10−4 ± 0.095·10−4 100 000

4
MC — — 10 000 000

1.5064·10−8

IS 1.453·10−8 ± 0.167·10−8 100 000

Table 3.4: Simulation results for the M/M/5/5 queue.

3.4 Conclusions

In this chapter, we have given an overview of common performance measures and
rarity regimes. Of particular interest are the regimes µ→∞, which will be the sub-
ject of Chapter 4, and the regime λ ↓ 0, which will be the subject of Chapters 5 and 7.
For these regimes we have described the typical shape of the dominant paths in a
birth-death process; a crucial aspect of our approach in the next chapters will be
the search for these dominant paths. We also touched upon the regime n→∞ and
presented some basic results from the literature for this regime.

For the regime τ̄ →∞, we have presented explicit results and useful approxima-
tions for the conditional distribution of sojourn times on a given path in a Markov
chain, given that their sum exceeds τ̄ . The resulting expressions are relatively sim-
ple and yield insight into how this rare event typically happens. Based on these in-
sights we have constructed an importance sampling change of measure and shown
that it performs well. A topic of future research could be to identify the dominant
paths in the regime τ̄ →∞ in general Markov chains, after which we can apply the
method presented here to those paths. It will also be interesting to consider (rare)
events in which both a time- and reward-bound play a role.

72 3. RARITY REGIMES IN THE BIRTH-DEATH PROCESS

CHAPTER 4

Networks of Parallel Birth-Death Processes

In the previous chapter we discussed the single birth-death process, which in a reli-
ability setting typically corresponds to a computer system consisting of components
of a single type — the births and deaths in the model then represent failures and re-
pairs of components respectively. Of course, the assumption that all components in
a computer systems share the same properties is not very realistic. Hence, the focus
of this chapter will be on networks of parallel birth-death processes, a model class
that corresponds to computer systems consisting of several independent compo-
nent types. This setting includes several well-known case studies from the reliabil-
ity engineering literature such as the Distributed Database System (DDS), which,
despite being studied since (at least) the late seventies [98], remains a relevant
model for modern processor and data storage systems. We are mainly interested
in the ‘fast component repairs’ regime of Section 3.2.2, but we will also consider the
‘slow component failures’ regime of Section 3.2.1. We will consider both the (tran-
sient) unreliability and the (steady-state) unavailability. Unlike Section 3.2, we do
not impose that the component failure and repair rates remain constant when one
or several components have already failed. We will also consider several different
repair strategies.

The outline of this chapter is as follows. In Section 4.1, we discuss the strategy
of standard dedicated repair: each component type has a dedicated repairmen who
begins work immediately when a component of his type fails. In Section 4.2, we
discuss the repair strategies of deferred repair: in this setting we still have a ded-
icated repairman, but repair is only begun when several components of a single
type have failed. In Section 4.3 we apply our techniques to the even more com-
plicated setting in which the components share a single repairman, which repairs
components using First Come First Serve (FCFS). Finally, we conclude the chapter
in Section 4.4.

4.1 Standard Dedicated Repair

The focus of this section will be on multicomponent systems with a standard ded-
icated repair strategy. The section is structured as follows. In Section 4.1.1 we
discuss the model setting, which has a nice structure as an SPN (see Section 1.1.3).
In Section 4.1.2 we introduce the DDS — the case study that we consider in this

74 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

section. In Section 4.1.3 we propose an efficient importance sampling scheme for
networks of birth-death processes such as the DDS. In Section 4.1.4 we empirically
demonstrate the good performance of this importance sampling scheme.

4.1.1 Model Description

Remember from Section 3.1.1 that a single birth-death process is a one-dimensional
CTMC in which there are at most 2 transitions leaving every state. A (non-trivial)
network of parallel birth-death processes is a parallel composition of d CTMCs,
d > 1, meaning that the state space equals Nd and that we have at most 2d transi-
tions per state, namely λj and µj , j = 1, . . . , d. Each state is then a vector and is
written as ~x, and writing ~ej for the unit vector with 1 as the value in the jth dimen-
sion, the λj-transition takes the state from ~x to ~x+~ej , whereas the µj-transition takes
the state from ~x to ~x− ~ej . In this setting, the taboo set (if it is relevant to have one)
is characterised by a single state ~xa, which equals either ~x0 or a duplicate if we re-
quire that the system does not start in a taboo state. The goal set is made up of those
states that correspond to an overflow in at least one of the d birth-death processes.
Formally, this means that for given overflow boundaries nj , nj ∈ N ∀j ∈ {1, . . . , d},
the goal set is the union of all sets in which there is a j ∈ {1, . . . , d} such that the jth
element of ~x is at least nj . We allow some rates to become zero; this can be realistic
as, e.g., in a reliability setting the failure rate of components of a certain type may
be zero when all components are broken. However, we assume for all ~x not in the
goal set that there is positive probability of the jth element of ~x reaching nj , i.e., it
is possible from each state to reach overflow in each of the d birth-death processes.

Another way to view networks of parallel birth-death processes is as instances
of stochastic Petri nets (SPNs; see Section 1.1.3). In Figure 4.1 a network of 9 par-
allel birth-death processes (e.g., the DDS of Section 4.1.2) is depicted as an SPN.
The component types are represented by places, one for the active components and
one for the broken components, and the transitions represent component failures
and repairs. For component type j, j = 1, . . . , d, the total amount of tokens in the
two places is always the same — this is assumed to be a parameter inherent to
the model and at most equal to nj . Hence, for each component type the number
of tokens in one place is then completely determined by the number of tokens in
the other. The state of the system can therefore be represented by a d-dimensional
vector ~x = (x1, . . . , xd) such that the xj corresponds to the number of broken com-
ponents of type j.

4.1.2 The Distributed Database System (DDS)

In this section we formally describe the DDS. We first describe the interpretation of
the individual birth-death processes that make up the network. Next, we describe
the meaning of system failure in this model setting. Finally, we discuss the model
parameters and discuss how they can be generalised.

4.1 Standard Dedicated Repair 75

Figure 4.1: A network of 9 parallel birth-death processes, modelled as an SPN. For each
individual birth-death process, the number of tokens in the left place corresponds to the
number of functioning components, and the second place to the broken components.

Model Description

The distributed database system is a benchmark problem in the field of depend-
ability evaluation [102]. It was recently studied in [16], and a variant was studied
in [43]. We study the DDS in this section because it can be seen as part of a more
general class of systems consisting of parallel component types. We assume that
the system as a whole is fault-tolerant, and that the probability of system failure is
low either because of the component failure rates being low or because of the repair
rates being high.

Specifically, the distributed database system consists of 24 disks that are grouped
together in 6 clusters of 4 disks, 4 disk controller units divided into two sets that
each access three disk clusters and a processor that accesses the disk controllers.
The processor has a spare that takes over in case of failure. There is one repair fa-
cility for each of the six disk clusters, one for each of the two sets of disk controllers
and one for the processor and its spare. The system is depicted in Figure 4.2.

We can distinguish 9 component types. Types i = 1, . . . , 6 represent the disks
in cluster i, types 7 and 8 represent the disk controllers in sets 1 and 2 respectively
and type 9 represents the processors. The interfailure times and repair durations
are assumed to be exponentially distributed. Let ~x be a vector in N9 in which each
element xi denotes how many components of type i have failed. We call this vector
the state of the process. The system will be assumed to start in an initial state ~x0 at
time t0 = 0.

Let D = {1, . . . , 9} be the set of component types. The failure and repair rates of

76 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

Figure 4.2: A distributed database system

components of these types may depend on the current state, so let the failure rates
be some nonnegative function λi(~x) for each component type i ∈ D and ~x ∈ N9.
Let the repair rates similarly be given by nonnegative functions µi(~x). The failures
and repairs are called transitions. The repair rate of component type i can only be
positive when there is at least one failed component of type i, and the failure rate
can only be positive if there are components of type i left that are operational.

Operation and Failure

The system is said to be operational if a processor can access all the data in the disks
— this condition is satisfied if each of the following subconditions holds:

1. at least one processor is up,

2. at least one disk controller in each of the controller clusters is up, and

3. at least three disks are up in each of the six disk clusters.

As mentioned in Section 4.1.1, we assume in general that system failures occur if
for at least one component type i, a specified number ni of components has failed.
System failure in the benchmark setting falls into this category. A state in the system
satisfies the atomic property b if and only if the system is failed in this state.

Using this definition of system failure we can formalise what kind of measures
we will estimate. By the unreliability we mean πψτ̄ (x0) = Px0

(♦[0,τ̄]b), the proba-
bility that the system stops being operational at some point before a specified time
bound τ̄ as described in Section 3.1.2, starting in x0. The unavailability is simply
the steady-state probability that at some time point t in steady-state the system is
not operational.

4.1 Standard Dedicated Repair 77

The Benchmark Case and Generalisations

The failure and repair rates of the individual components are given in Table 4.1. In

failure rate repair rate
disks λ µ

disk controllers 3λ µ
processors 3λ µ

Table 4.1: Failure and repair rates in the benchmark model

the benchmark case (see [16]) we have λ = 1/6000 and µ = 1. The rates in the lit-
erature are per hour, and the time bound τ̄ for the unreliability is 5 weeks, so equal
to 840 time units in this setting. The individual components all have the same fail-
ure distribution regardless of how many other components are up. E.g., the total
failure rate λi(·) of type 1 components (the first disk cluster) is 4λ when no com-
ponents are down, 3λ when one component has failed, and so on. The component
repair rate of each i is always µ if xi > 0, because there is only repair facility per
type.

We also parameterise the number of spares. We introduce a new parameter n
and assume there are n processors, n disk controllers per set and 2n disks per clus-
ter. For n = 2 we are back in the benchmark case. Let failure in this more general
setting be defined to occur when either (1) no processor is up, (2) in one disk con-
troller set, no disk controller is up or (3) in one disk cluster at least n disks are
down.

4.1.3 Approximating πψτ̄ using Straight Paths
In this section, we seek to obtain a good approximation w for πψτ̄ to be substituted
into (1.12) to produce a good simulation measure. As mentioned in Section 3.1.3,
an obvious candidate for w is the probability of the straight paths to failure: those
paths that end in a system failure state and which contain only failure transitions
of a single component type. Let d be the number of types. From each state ~x, we
have d straight paths to failure, one for each type k. Let νk failures remain until the
critical level nk is reached for type k, and let the vector of states that are seen along
this path be denoted by [~xk,0, . . . , ~xk,νk], with ~xk,0 equal to ~x. The probability of this
path being taken equals

P([~xk,0, . . . , ~xk,νk]) =

νk−1∏
i=0

λk(~xk,i)

η(~xk,i)
,

where η(~x) is the exit rate in state ~x. We can then use

w∗(~x) =

d∑
k=1

νk−1∏
i=0

λk(~xk,i)

η(~xk,i)
(4.1)

78 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

as a time-independent approximation of w. From now on, the ∗ in w∗ indicates that
we only use the straight paths as an approximation.

Unfortunately, some further investigation reveals that the approximation (4.1)
is too crude. One shortcoming of w∗ is that the most likely path from a state ~x′ to
system failure might not be one of the d straight paths. In many cases, the most
likely path is the path in which the system first returns to state ~xa and then takes
one of the straight paths that determine w∗(~xa). This can be seen in Figure 4.3,
which depicts the state space of a simplified model with only two component types.
Starting from state ~x′ in Figure 4.3, the dashed line path (the one going ‘north’) is,
with realistic rates, much less likely to occur than the solid line path because the
former contains one more step where a failure transition needs to win the race from
a repair transition.

~xa ~x′

x2 →

x
1
→

Figure 4.3: A model consisting of two types of components. For one type there are many
more spares than the other, but its components fail more quickly.

Accordingly, we also consider the straight paths from state ~xa for our approxima-
tion w(~x′). From state ~x′, the system returns to state ~xa with probability almost
equal to one. Therefore, for each state ~x we can use the sum of w∗(~x) and w∗(~xa)
instead of just the former. As a consequence, the jump from state ~xa to state ~x′

will more often be taken under the new distribution. This is desirable — paths that
contain cycles between state ~xa and the states where one component has failed are
almost equally likely as the straight paths from ~xa, as we explained in Section 3.2.2.

However, the contribution of w∗(~xa) needs to be time-dependent — cycles to
the taboo state are only likely when the taboo state’s exit rate η(~xa) is high enough
compared to the remaining time τ̄ − t. Otherwise, the extra jumps take too much
time, which reduces the likelihood of these paths.

For finding a time-dependentw(~x, t), a crucial insight is that the time-independent
function w∗(~xa) is still a good approximation for the probability of hitting a system
failure state during a busy cycle. For ease of notation, let c , w∗(~xa) and λ0 , η(~xa).
When the failure rates are low or the repair rates are high, the duration of the busy
cycle is almost completely determined by the time spent in state ~xa. Therefore, the
time it takes before we reach a system failure state is the sum of M busy cycle du-
rations Di where M itself is a random variable. Here, the durations Di are all inde-
pendent and exponentially distributed approximately with the rates λ0, while the
number M follows a geometric distribution with approximate success parameter c.

4.1 Standard Dedicated Repair 79

From elementary probability theory we know that this sum follows an exponential
distribution with rate λ0 · c, hence the probability that this is completed before τ̄ − t
time units has approximate probability 1− exp(−λ0 · c(τ̄ − t)).

For small x, 1 − e−x approximately equals x. Since c is assumed to be small,
we can approximate w(~xa, t) using the time-dependent function cλ0(τ̄ − t). This
motivates our final approximation,

w(~x, t) =

{
c · λ0 · (τ̄ − t) if ~x = ~xa,

w∗(~x) + c · λ0 · (τ̄ − t) otherwise.
(4.2)

Using (4.2) in (1.12) keeps the estimator efficient when the rarity of the event of
interest is not caused by the low component failure rates but rather the high repair
rates. Our numerical results will show that this adaptation is crucial in practical
situations. To draw sojourn times, we use forcing as described in Section 1.3.4. We
do this in all states, even if it is really necessary only in ~xa.

4.1.4 Simulation Results
In this section, we demonstrate that the change of measure of (4.2) produces good
results in practice. We compare our method to a few other well-known techniques.
The first of these is the standard Monte Carlo method. A more efficient method
is that of forcing combined with balanced failure biasing (BFB, see Section 1.3.4).
The third simulation method found in the result tables of this section are the esti-
mates produced with the new method using the approximation in (4.2), abbrevi-
ated as Path-IS. Finally, we will compare our method to the numerical methods of
the model checking tool PRISM.

When we display the experimental results in a table, we first give the statistical
estimates. These are either the standard Monte Carlo estimates as in (1.3) or impor-
tance sampling estimates as in (1.9), which will be clear from the context, and are
given in the form of a 95%-confidence interval. We write π for the unreliability and v
for the unavailability (see Section 1.2.1) — π̂ and v̂ are their respective estimates. To
the right of the estimates, we state the number of simulation runs used to produce
these estimates. The number of simulation runs for each method was picked such
that the computation time was comparable to that of PRISM. In the last row(s), we
display the numerical solutions and the number of states in the PRISM [67] and
Arcade [16] models (the latter tool uses lumping/bisimulation minimisation to re-
duce the size of the state space). The exact computation and simulation times are
specified in the text.

Experimental Setup

There is a fundamental difference between the numerical approach and the statisti-
cal approach in the sense that numerical methods (if they converge) give an almost
perfect (depending on the stopping criterion) approximation after some fixed time
interval. On the other hand, statistical methods produce confidence intervals that

80 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

can be made as narrow as one would like, depending on how much time one is will-
ing to spend. The best way to say something about the applicability of an approach
for the user is to look at the wall-clock time.

We used a computer with a 2.8 GHz Intel® CoreTM 2 Duo processor (32-bit)
and 3 GB of RAM, running Windows XP. All simulations were run with a sim-
ple Java program that generated (pseudo-)random numbers using a fast Mersenne
twister [75]. We used version 3.3.1 of PRISM.

Unavailability

Of the two measures discussed in this section, the unavailability is the easiest to
approximate. Because it considers the system when it is in equilibrium, no infor-
mation about the transient behaviour of the system is needed. Numerical methods
to analytically determine or iteratively approximate it are well-established.

First, we will show in Table 4.2 that our results are consistent with the other
tools and the literature, namely [16]. The unavailability in [16] was only given in
one significant digit, and the total run time was not specified. When we lower the

v̂ (·10−6) # samples
MC 3.677± 0.778 388 196
BFB 3.647± 0.104 169 484

Path-IS 3.511± 0.035 79 611
v (·10−6) # states

PRISM 3.498 421 875
Arcade 3 2 100

Table 4.2: Unavailability (v̂) results for the benchmark case. λ = 1/6000, µ = 1, n = 2.

component failure rate parameter λ from 1/6000 to 1
6 · 10−6, the simulation esti-

mates agree with the numerical results obtained using PRISM, with the exception
of standard Monte Carlo. This is displayed in Table 4.3. Increasing µ from 1 to 1000

v̂ (·10−12) # samples
MC 5.847± 11.460 386 538
BFB 3.532± 0.105 165 943

Path-IS 3.521± 0.036 78 179
v (·10−12) # states

PRISM 3.500 421 875

Table 4.3: Unavailability (v̂) results when λ = 1
6
· 10−6;µ = 1, n = 2.

gives us similar results, as depicted in Table 4.4 (note that the unavailability val-
ues for λ = 1

6 · 10−6 and µ = 1000 are exactly the same. This is not a coincidence,
as the solution depends only on the transition rates through the ratio λ/µ). In all
these cases PRISM does better than the simulation approaches discussed so far —

4.1 Standard Dedicated Repair 81

v̂ (·10−12) # samples
MC 0±∞ 384 418
BFB 3.504± 0.102 165 115

Path-IS 3.465± 0.035 76 923
v (·10−12) # states

PRISM 3.500 421 875

Table 4.4: Unavailability (v̂) results when µ = 1000; λ = 1/6000, n = 2.

indeed, for models with small state spaces PRISM’s steady-state techniques are to
be preferred to simulation, regardless of λ or µ. However, if we increase the spare
component parameter n from its benchmark value of 2 to 3, the size of the state
space increases about 18-fold, as can be seen in Table 4.5. This causes PRISM’s
computation time to increase, from about 3.4 seconds for Tables 4.2-4.4 to 113.1
seconds for Table 4.6. When we increase n even further, we hit tougher bound-

n # states # non-zeros
2 421 875 5 737 500
3 7 529 536 111 329 568
4 66 430 125 1 027 452 600
5 382 657 176 6 087 727 800
6 1 655 595 487 26 853 394 932

Table 4.5: State space sizes and numbers of non-zero entries in the transition rate matrix
of the models built by PRISM for different values of n.

v̂ (·10−9) # samples
MC 7.235± 6.135 12 977 468
BFB 5.656± 0.151 3 434 986

Path-IS 5.580± 0.015 1 315 050
v (·10−9) # states

PRISM 5.578 7 529 536

Table 4.6: Unavailability (v̂) results when n = 3; µ = 1, λ = 1/6000.

aries on the applicability of numerical methods due to the state space explosion
problem. For n ≥ 4, the amount of memory that our system has available for “cre-
ating [a] vector for diagonals” is insufficient and PRISM terminates without giving
a solution (even after adjusting the memory usage maxima in PRISM’s settings).
For n = 6, Path-IS still produces accurate estimates when we set the simulation
time to a mere 60 seconds, as can be seen in Table 4.7. BFB underestimates the un-
availability, a well-known phenomenon when the change of measure being used is
not suitable for the problem [33].

82 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

v̂ (·10−16) # samples
MC 0±∞ 6 708 624
BFB 0.148± 0.225 803 752

Path-IS 1.173± 0.016 205 654
v (·10−16) # states

PRISM N.A. 1 655 595 487

Table 4.7: Unavailability (v̂) results when n = 6; µ = 1, λ = 1/6000.

Unreliability

The unreliability is (from a theoretical point of view) a more interesting case than
the unavailability because, unlike the latter, the former is not known in closed form
for the models that we consider [44] — hence, we simply have to use numerical
and/or statistical methods. First, note that we have defined the unreliability to
refer to the probability of system failure before some time point τ̄ (in this case 840
hours), allowing the repair of components in this time interval. In [16] and [102],
component repairs were not allowed to occur.

In Table 4.8, we display the results for the benchmark case (no repairs allowed).
Because PRISM’s numerical evaluation was very quick (0.235 seconds), we gave
the statistical methods more time (60 seconds), as the purpose of Table 4.8 is only
to show that our results are consistent with the literature even when the repair
transitions are disabled. Again, no run time was given for Arcade in [16]. Note that
standard Monte Carlo and BFB give the best results in this setting because their
simplicity allows them to sample many more runs within the (real) time constraint.
Also, the event of interest is not rare in this setting so we are not in a setting in
which the IS-methods are expected to perform well. When we allow repairs to occur

π̂ # samples
MC 0.5981± 0.0003 8 304 940
BFB 0.5976± 0.0003 5 116 887

Path-IS 0.5977± 0.0019 93 526
π # states

PRISM 0.5980 421 875
Arcade 0.5980 2 100

Table 4.8: Unreliability (π̂) results without repair (µ = 0), n = 2, λ = 1/6000.

the unreliability drops to approximately 0.0029. It takes PRISM little more than 30
seconds to compute this probability. This computation time does not depend on λ,
as it took a comparable amount of time to generate the results of Table 4.9, where
we lowered λ to 1

6 · 10−6.
However, when we increase µ, the time that PRISM needs to produce a solution

increases along with it. The applied numerical methods require that the transi-
tion rate matrix be uniformised, and the uniformisation rate increases linearly in µ.

4.1 Standard Dedicated Repair 83

PRISM’s computation time in turn increases linearly in the product of the uniformi-
sation rate and the mission time (see [49], chapter 15). Because the uniformisation
rate is so much higher than the original exit rate of the taboo state, many unneces-
sary self-loops are taken into account. This can heavily slow down the computation.
On the other hand, the accuracy of the Path-IS estimate remains constant as µ in-

π̂ (·10−9) # samples
MC 0±∞ 18 438 588
BFB 2.936± 0.024 1 042 866

Path-IS 2.937± 0.001 992 231
π (·10−9) # states

PRISM 2.936 421 875

Table 4.9: Unreliability (π̂) results when λ = 1
6
· 10−6; n = 2, µ = 1.

creases since the jumps out of the taboo state still occur with the same low rate.
A few estimates together with PRISM computation times are given in Figure 4.4.
Notice that when µ = 100, PRISM takes over half an hour to produce an approxi-
mation, while our simulation method can produce a decent estimate in 10 seconds.

Figure 4.4: Estimates for the probability π (the unreliability) from PRISM (dashed,
crosses) and Path-IS (dashed, circles) on left vertical axis; PRISM run time (solid,
crosses) on right vertical axis (we did not generate PRISM-results for µ > 100 due to
the large computation time). The Path-IS run time was only 10 seconds, but the bounds
of the 95%-confidence interval were still not distinguishable from the estimate at this
scale.

For high µ (and high τ̄), the confidence intervals of BFB are also noticeably wider

84 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

than those of Path-IS. For µ = 1000 (10 second run time), they were 2.943±0.013 and
2.920± 0.358 (times 10−6) respectively. The reason is that BFB is not well-suited for
the rarity regime of ‘fast component repairs’ (the regime discussed in Section 3.2.2).19

For higher values of the spare component parameter n, PRISM again starts to
suffer from the state-space explosion problem. We omit results for this scenario as
they are comparable to the results for the unavailability when n is high.

4.2 General Busy Cycle Durations

Consider again a system that consists of several component types with a dedicated
repair unit for each type. We previously assumed that repair would start imme-
diately after a component failure, but now assume that, for one or multiple com-
ponent types, the cost of having the repairman come over is high. In this setting,
it might be more cost-efficient to initiate repair for a component type only after
multiple components of this type have failed. This repair strategy is called deferred
repair. Generalised versions of BFB were proposed in [60] and [61] for estimating
steady-state measures in this model setting.

We cannot trivially assume that the method described in Section 4.1.3 also works
well in this new setting; the analysis in this section relies on the busy cycle dura-
tions being approximately memoryless, but no matter how small λ/µ is in this new
scenario, there will be more than one exponential ‘phase’ in which a non-negligible
amount of time is spent before system failure. Since µ is very high compared to λ, a
non-negligible amount of time is spent only in states in which no repair transitions
are allowed.

In other words, we need to divide the state space into two subsets: a typical set
in which repair transitions are not allowed and in which the system spends the bulk
of its time (~xa in the setting of Section 4.1.3, but a larger number of states in the cur-
rent setting), and an atypical set outside of it. Therefore, the probability distribution
of the time until system failure will depend on the phase in the typical region, and
phase-type distributions are not memoryless in general. Furthermore a good ap-
proximation w(~x, t) will require that information about a larger set of typical paths
is used than just the straight paths of Section 4.1.3. These paths may ‘turn’ inside
the typical region, and are straight only after entering the atypical region.

In this section we will show how to overcome these problems. In Section 4.2.1
we will describe how the loss of the memoryless property can be overcome, by
showing that in an appropriate limiting regime the importance of the current phase
will vanish and the time until system failure will again have a memoryless distri-
bution. In Section 4.2.2, we will study the nature of the larger set of relevant paths,
and in Section 4.2.3 we will demonstrate the necessity of the analysis in this section
by empirically comparing the generalised method (which we shall call Path-IS-G)
to the method of Section 4.1.3 (called Path-IS), standard simulation, BFB and the

19More refined techniques based on BFB are available for this setting [80], but depart from the standard
set-up of importance sampling as discussed in Section 1.3.2.

4.2 General Busy Cycle Durations 85

numerical techniques of PRISM.

4.2.1 Non-Memoryless Busy Cycles
As we will only discuss the problem of non-memorylessness in this section, we
consider a very simple model in which the need for extra paths does not occur. This
is the case when our system consists of only one component type. A model of such
a system is depicted in Figure 4.5, where the squares represent states in the typical
set (i.e., where repair transitions are not yet allowed) and the circles represent states
in the atypical set.

~xa

λ

λ

λ λ

µµ

µ
λ

µ

typical set

atypical set

Figure 4.5: A model with a single component type. The repairman starts work only
after the second component has failed.

For small λ/µ the duration of a busy cycle will be almost completely determined
by the sojourn times in the typical set. Clearly, such a duration approximately has
an Erlang(2,λ) distribution, for which the memoryless property does not hold. In
more general situations, the distribution of the time spent in the typical set could
have any phase-type distribution.

Although the time within a busy cycle is no longer memoryless, the distribu-
tion of the number of busy cycles needed before system failure remains geometric,
hence, memoryless. We know that λ/µ is small, so c, the probability of system fail-
ure during a single busy cycle, will also be small. As a consequence, the expected
number of busy cycles before system failure will be large. Interestingly, it can be
shown that for small values of c the time until system failure again approximately
has an exponential distribution, with rate c/E(D), withD the duration of a busy cy-
cle as in Section 1.2.1. This is formalised in Theorem 4.1. In this theorem, we prove
that despite the fact that the duration of each busy cycle is no longer exponentially
distributed, the sum of a geometrically distributed number of these durations is
approximately exponentially distributed if the success parameter of the geometric
distribution is small. First we will state the theorem, then we explain why we need
the theorem, then we prove the theorem and conclude the section with a short dis-
cussion on how we use it.

Theorem 4.1. LetX1, X2, . . . be a sequence of i.i.d. random variables such that E(X1) <∞,
and let M be a random variable independent of Xi, i ∈ N, that has a geometric distribution

86 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

with success parameter q. Let Sn = X1 +X2 + . . .+Xn. Then

lim
c↓0

P(cSM > t) = e−t/E(X1).

Theorem 4.1 states that for small c, P(cSM > t) ≈ exp(−t/E(X1)), which implies
that P(SM > t) ≈ exp(−c · t/E(X1)) which we will use below.

Proof. Since a probability distribution is uniquely characterised by its Laplace-Stieltjes
Transform (LST) we will consider the LST of cSM . For the LST of X1 we know that,
since E(X1) <∞, we can write

E
(
e−sX1

)
= 1− sE(X1) + o(s),

where o(s) stands for a function f(s) satisfying lims↓0
f(s)
s = 0. Furthermore, it is

known that the probability generating function (PGF) of a geometrically distributed
random variable M with probability c is

E(zM) =
c

1− (1− c)z
,

Then with M geometrically distributed it holds that

E
(
e−scSM

)
= E

(
E
(
e−scSM |M

))
= E

([
E
(
e−scX1

)]M)
=

c

1− (1− c)E (e−scX1)

=
c

1− (1− c)(1− scE(X1) + o(sc))

=
c

c+ (1− c)scE(X1) + o(sc)
c↓0−−→ 1

1 + sE(X1)
,

which we recognise as the LST of an exponentially distributed random variable
with mean E(X1).

Using the same linear approximation as in Section 4.1.3 we obtain an approximation
w(~x, t) similar to (4.2) with λ0 replaced by 1/E(D).

We note here that in the setting in which we will apply the theorem, not all of
its assumptions are satisfied: first of all, even if there is only one state in the typical
set, M and the series X1, X2, . . . are not completely independent. After all, XM has
a different probability distribution than X1, X2, . . . , XM−1 (a busy cycle in which
system failure occurred went ‘deeper’ into the state space than a typical busy cycle,
so it can be expected to have lasted longer.) However, we expect this not to have
much impact on our conclusions for two reasons: first of all, when c goes to zero,M
will grow larger and the relative influence of XM with respect to X1, X2, . . . , XM−1

4.2 General Busy Cycle Durations 87

will vanish. Furthermore, in our setting c ↓ 0 because λ ↓ 0 or µ → ∞, and in
exactly these two regimes the difference between the distributions of XM and the
preceding busy cycle durations will vanish as the time needed to go ‘deeper’ into
the state space becomes smaller relative to the time spent in the typical set’s only
state.

In our situation there is more than one state in the typical set, the point of entry
into the typical set will have influence on the next point of entry (it is less likely that
this is the same state twice in a row). This means that there is correlation between
each Xi and Xj , i, j > 0, but this vanishes as |i − j| gets bigger. The assumption
that we make is that in our limiting regime, i.e., c ↓ 0, the series of busy cycles until
system failure becomes so large that the influence of the correlation between the
individual random variables becomes smaller as well. Judging by our empirically
determined estimator variances, this assumption is justified.

4.2.2 Non-Rare Paths

The next step is to extend the result of Section 4.2.1 to a system with multiple com-
ponent types — a model of such a system is depicted in Figure 4.6a. It still holds for
this system that the duration of the busy cycle is approximately equal to the time
spent in the typical set. However, when a system has a large number of component
types with comparable failure rates, it is likely that between failures of two compo-
nents of the same type, a component of another type fails. The ‘straight’ paths of
Section 4.1.3 do not account for such behaviour. As a consequence, the probability c
of failure during a busy cycle is underestimated, and the resulting change of mea-
sure will be inefficient because the probability of falling back to the origin is made
too low.

Another consequence of the added component types is that the expected dura-
tion of a busy cycle may be very long. Not only does this impact the efficiency with
which we can estimate E(D), it may also imply that the assumption, made in Sec-
tion 4.2.1, that the probability of system failure during a busy cycle c is small while τ̄
is relatively large compared to E(D), is violated for realistic parameter settings.

Hence, we alter the definition of the busy cycle: we now say that a generalised
busy cycle D′ starts and ends when the system jumps from the atypical to the typical
set. Note that the starting times of the busy cycles are no longer i.i.d., but this has a
negligible impact. Hence, we can still justifiably approximate the time until system
failure by a geometrically distributed number of (generalised) busy cycle durations.

We approximate the probability c of failure in such a generalised busy cycle us-
ing the following strategy: we use simulation using the original probability distri-
bution (see Section 1.2) to estimate E(D′). This means that we choose a number ND
a priori or let it depend on a bound on the run time. Because a fixed time bound
leads to strongly varying accuracies of E(D′) for different n and λ (the number of
samples generated per time unit depends strongly on these model parameters) we
fixed ND = 500 for the results of Section 4.2.3.

Whenever a new generalised busy cycle starts during this first simulation round,

88 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

x2 →

x
1
→

~xa

(a)

x2 →

x
1
→

~xa

(b)

Figure 4.6: A model consisting of two types of components, where for each type, repair
starts when two components of that type have failed. The square states represent the
typical set, the round states represent the atypical set. In (a) we display all possible
transitions; in the square states none of the repairs are yet enabled. In (b) we display
only the most important transitions; dashed: transitions in a typical successful busy
cycle; dotted: transitions in a typical unsuccessful busy cycle; solid: transitions that
occur in both.

we record the state ~x in which the typical set is entered. We then find all paths that
first move (in any way) through the typical set and then follow a straight path to
system failure. In the example of Figure 4.6(b), there would be four of those paths
from ~xa = (0, 0) and three from the states (0, 1) and (1, 0) in the typical set. Then we
use the sum of the probabilities of all those paths — we denote this value by ĉ∗(~x)
— as a single sample that is used to find an estimate for q. Hence, our approximation
for c is a random variable C whose expected value we estimate using the same
simulation runs as the ones for E(D′). Finally, after having generated ND samples,
we use the sample means as estimates for E(D′) and E(C), which leads to our final
approximation:

w(~x, t) =

{
E(C) · (τ̄ − t)/E(D′)·, if ~x = ~xa,

ĉ∗(~x) + E(C) · (τ̄ − t)/E(D′), otherwise.
(4.3)

In Section 4.2.3 we will only display results for the unreliability, but one can also
use the change of measure in (4.3) to estimate the steady-state unavailability. One
would then again set (τ̄ − t) to zero and the only change would be the number of
paths used for w∗. Note that for the ratio estimator (1.5) we still use busy cycle
durations D instead of D′ as the latter ones do not form a renewal process.

4.2 General Busy Cycle Durations 89

4.2.3 Simulation Results

In this section, we will empirically compare the simulation distribution based on
(4.2) (Path-IS) to the more general simulation distribution based on (4.3) (Path-IS-G).
We introduce a vector of repair thresholds ri, i ∈ {1, . . . , 9}. Repair of component
of type i is “allowed” when the number of failed components of type i reaches the
threshold ri, and then switched off when all failed components of that type have
been repaired. Typically, the addition of these triggers will increase the expected
generalised busy cycle duration but also increase the probability q of failure during
such a cycle both due to an increased number of ways failure can occur (more paths
to failure) and the fact that fewer failure transitions need to ‘win the race’ against
repair transitions.

Single Component Type

We will first consider the increase in expected busy cycle duration by considering
the processor set (which is one of the nine component types) in isolation. We in-
crease τ̄ from the benchmark 840 to 8 400 because in the new setting the generalised
busy cycle will take so long that the assumption that cycles are completed before
system failure is no longer valid. The CTMC that underlies the model will then
look like the one in Figure 4.5 — there are ri states in the typical set and n states
in the atypical set. For Figure 4.7, we let ri = n/2 and show the estimates and nu-
merical results of PRISM for increasing n. The probability of interest can be seen to
decrease exponentially. In this situation, PRISM is still clearly superior in the sense
that its computation times are negligible; the reason is that the model size is very
small when only one component type is modelled.

The 95%-confidence intervals in Figure 4.7 are too narrow to be visible. How-
ever, to get an idea of how wide they are compared to each other, we display the
relative error σ̂/(π̂

√
N) in Figure 4.8. At n = 2, the two methods are still the same

as repair starts immediately after a component has failed. However, for larger val-
ues of n the generalised approximation Path-IS-G clearly outperforms the original
Path-IS. When n (and, hence, all ri) grows higher, the difference between the two
‘estimates’ for E(D) and E(D′) increases. As a side note: for higher τ̄ the efficiency
of the change of measure based on (4.2) will decrease further.

Multiple Component Types

Whereas PRISM is still the most efficient tool for analysing small models such as the
Distributed Database System (DDS) with only one component type, its performance
is much worse for models with larger values of n. For n = 3 and ri = 2 for all i,
the size of the state space is 32 768 000 compared to the 7 529 536 of Table 4.5 — the
number of non-zero entries in the transition rate matrix increases by a similar factor.
PRISM runs out of memory in this situation, so in order to be able to compare the
methods we remove two disk sets from the model, resulting in seven component
types. This model only has 512 000 states and 5 478 400 transitions. It takes PRISM

90 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

Figure 4.7: Unreliability (π̂) results for the model with one component type. λ =
1/6000, µ = 1, τ̄ = 8 400, r1 = n/2. N = 1000 samples were drawn for each simu-
lation — the run time for each simulation was less than five seconds. PRISM run time
was negligible.

Figure 4.8: Relative errors σ̂/(π̂
√
N) for the model with one component type.

λ = 1/6000, µ = 1, τ̄ = 8 400 r1 = n/2. We drew N = 1000 samples for each data
point — the run time for each simulation was less than five seconds.

4.2 General Busy Cycle Durations 91

about 44 seconds to find a solution. In Table 4.10 we combine this result with the
results of simulations with a similar run time.

π̂ (·10−4) # samples
MC 9.296± 0.503 1 410 356
BFB 8.691± 0.833 382 539

Path-IS 9.483± 0.183 24 319
Path-IS-G 9.313± 0.105 19 197

π (·10−4) # states
PRISM 9.366 512 000

Table 4.10: Unreliability (π̂) results for the model with 7 component types. ri = 2; n = 3,
λ = 1/6000, µ = 1, τ̄ = 840.

As expected, Table 4.10 shows that a change of measure based on (4.3) outperforms
one based on (4.2). The difference is not dramatic, however. This is because the
longer busy cycle durations and higher probability of success during a busy cycle
cancel to some extent, causing the rates in the exponential approximation in the two
methods to differ by only a factor of 2.2.

Note that the results produced by Path-IS are still usable; however, once we
raise τ̄ , its performance will again deteriorate. The performance of the two methods
does not worsen for higher µ, which can be seen in Table 4.11, in which we raised
the value of µ from 1 to 1000. PRISM is still able to produce a result in this situation
but only after 10 hours, whereas the run time of the simulation-based methods was
44 seconds. Note also that BFB does not perform very well – the reason is that this
model contains so-called high-probability cycles, a known complication for BFB. We
will discuss high-probability cycles in greater detail in Chapter 5.

In Figure 4.9, the relative error σ̂/(π̂
√
N) is displayed for increasing values of µ.

We can see that the relative error of Path-IS is not only higher but also much more
volatile, which shows that the estimate is less reliable. More importantly, the rel-
ative error of Path-IS-G remains almost constant; this implies that, unlike Monte
Carlo simulation, the time complexity of Path-IS-G does not depend on µ and
thereby not on p, the probability that we seek to estimate.

π̂ (·10−7) # samples
MC 6.696± 13.12 1 413 429
BFB — 301 322

Path-IS 9.458± 0.178 23 872
Path-IS-G 9.350± 0.103 19 566

π (·10−7) # states
PRISM 9.388 512 000

Table 4.11: Unreliability (π̂) results for the model with 7 component types. µ = 1000;
n = 3, ri = 2, λ = 1/6000, τ̄ = 840.

92 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

Figure 4.9: Relative errors σ̂/(π̂
√
N) for the model with 7 component types.

λ = 1/6000, n = 3, τ̄ = 840, r1 = . . . = r7 = 2. N = 1000 samples were drawn
for each simulation. Note the the peaks are not structural, but simply evidence of the
whimsicality of the estimator.

4.3 Shared Repair Facilities

The defining characteristic of the method presented previously is that it is path-
based; it works well if failures mostly occur in a manner that corresponds to one of
the dominant paths. In Section 4.1, we outlined a model class for which we can
guarantee that this assumption is valid. However, the class of models for which
our method (or variations thereof) works well is much broader and contains other
models with large practical relevance. To be more specific: we formulated two
requirements in Section 4.1 that our system model’s repair strategy had to meet: (i)
for each component type, repairs had to be handled by a dedicated repair facility,
independent of all other component types and (ii) repairs had to start immediately
after the first component of a type had failed. In Section 4.2 we have shown how
to drop the latter assumption. Additionally, however, one could also think of good
reasons to drop the former.

First of all, it is simply unrealistic to assume that two disk sets have two separate
repair facilities. A single repair facility taking care of all the repairs in the system
is often closer to practice. Secondly, models with dependent component types are
more theoretically appealing. If all component types are independent, we can com-
pute several important probabilities in the system by first computing them for each
component in isolation and then performing a trivial aggregation step.

Of course, generalising to a single repair facility for all component types means

4.3 Shared Repair Facilities 93

we have to specify a repair policy that determines how the repair facility decides
which component type to work on whenever components of multiple types are
down. From the many policies that have been studied in the literature (see also
Chapter 6 of [49]), we will zoom in on one policy, namely true FCFS, to illustrate the
wider applicability of our method. True FCFS means that individual components
are repaired in the order in which they fail.

The impact of this choice of repair strategy on the state space of our model
is such that each state in which several components have failed must be dupli-
cated such that all possible orders of failure can be represented, not discriminat-
ing between components of the same type. This has a strong negative effect on
the performance of PRISM; not only is expressing this model in the PRISM mod-
elling language a challenge, there is also a dramatic blow-up in the size of the state
space. In the benchmark setting, the size of the state space goes from 421 875 states
to 2 123 047 371 states.

In Table 4.12, we have displayed simulation results for both the old situation
and the new one. Each simulation was run for 33.609 seconds, which is the amount
of time needed by PRISM to compute the exact probability in the old setting. The
difference between the results of the two repair strategies is marginal: only the path-
based IS estimates differ significantly. The reason is that for the system to reach a
state in which the two strategies result in different outgoing transition structures, a
failure transition must win the race from a repair transition. Since the probability
of this happening is assumed to be small for Path-IS-G to work well, it will be hard
to notice a difference.

dedicated repair 1 facility, FCFS
v̂ (·10−3) # samples v̂ (·10−3) # samples

MC 2.941± 0.106 1 009 973 2.956± 0.138 596 136
BFB 2.975± 0.176 317 989 2.790± 0.222 189 032

Path-IS-G 2.901± 0.020 21 508 2.960± 0.027 11 311
v (·10−3) # states v # states

PRISM 2.928 421 875 N.A. 2 123 047 371

Table 4.12: Unavailability (v̂) results when λ = 1/6000, µ = 1, n = 2.

One can check that if we were to switch to deferred repair we would also see that
the path-based methods work well if the assumptions are such that there is little
difference between dedicated repair and a single repairman. However, if we as-
sume that the components of different types are physically close to each other, this
strategy is not only theoretically unappealing but also unrealistic; if there is a single
repairman for all component types who would come over to fix broken processors,
he would most likely also directly repair a failed disk even if the repair threshold
for disks of its type had not been reached.

So consider the following strategy: we again have deferred repair, but when for
any one component type i a number ri components have failed, the repairman will
come over and begin repair on all broken components and leave when the system is

94 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

back in the ‘all up’ state. The repairs are handled in a first-come first-serve fashion
irrespective of which component type triggered the repairman to come over.

µ = 1 µ = 1000
v̂ (10−3) # samples v̂ (10−6) # samples

MC 1.748± 0.061 1 784 962 2.273± 2.228 1 759 644
BFB 1.749± 0.098 602 621 — 479 383

Path-IS 1.779± 0.029 20 524 1.800± 0.025 20 773

Table 4.13: Unavailability (v̂) results with one repairman who repairs all broken compo-
nents of all types before leaving in a first-come serve fashion; λ = 1/6000, n = 3, ri = 2.

In Table 4.13, we display the simulation results for this setting with n = 3, λ and µ
equal to the benchmark values and r1 = . . . = r9 = 2. We would run into
problems if we tried to directly apply the method of Section 4.2 to this situation as
even the typical set suffers from the state space explosion problem. For example,
due to the FCFS policy there are 9! = 362 990 states in which one component of each
type has failed, and these are all in the typical set. To circumvent this problem we
(incorrectly) assume that for all such states (that differ only in the queue order), the
sum of the straight paths leading out of those states will be the same. While this will
introduce an error, this error does not get worse as λ gets lower or µ gets smaller,
and the resulting estimator remains much better than the standard Monte Carlo
estimator whose performance will degrade sharply. In the end, our approximation
does not need to be exact for the estimate to remain unbiased. As can be seen in
Table 4.13, our method still performs well.

4.4 Conclusions and Discussion

In this section, we first draw the general conclusions. Then we discuss our method’s
computational complexity and compare it with other methods. Finally, we discuss
generalisations of the method and future work.

4.4.1 General Conclusions

In this chapter we have introduced an efficient simulation technique that is able to
estimate dependability measures in situations were system failure is a rare event
due to high repair rates or low component failure rates. The approach that we used
is based on the zero-variance measure for transient failure probabilities in CTMCs,
approximated using insight in the most likely paths to failure. We have shown how
to apply this method when a more complicated repair strategy such as deferred (or,
by analogy, group) repair is used.

We have demonstrated that our technique performs well even for large models
as long as the component failure rates are much lower than the repair rates. Also,
we have shown that our method performs well in comparison to other methods.

4.4 Conclusions and Discussion 95

The method of Balanced Failure Biasing combined with forcing is only well-suited
for the low λ situations and performs poorly for high µ and n. Numerical tech-
niques, as, e.g., implemented in PRISM, suffer from large state spaces and high
uniformisation rates. Table 4.14 summarises this comparison by presenting the best
choice of method for given parameter settings.

Performance measure low λ high µ high n
Unreliability PRISM Path−IS Path−IS

Unavailability PRISM PRISM Path−IS

Table 4.14: Which method performs best depends on parametric regime and perfor-
mance measure.

Note that the method is not specifically designed for high n. If n is too high, Path-
IS will also start to see worsening performance.20 However, for n not too large
and λ/µ sufficiently small, Path-IS will have good performance in situations where
PRISM runs out of memory. Adapting the simulation for high n situations is part
of ongoing research.

4.4.2 Complexity

In Table 4.15, the time and space complexities of the methods whose efficiencies
are compared in this chapter are displayed. For the numerical and standard sta-
tistical methods the values of the complexities were given in [114] — we rewrote
these complexities in terms of the model parameters used in this chapter. The ex-
pected time complexity of the statistical methods is inversely proportional to p, the
probability that we want to estimate. Using importance sampling, we lose this de-
pendence on p. However, d paths of maximum length n need to be evaluated in
each step of the simulation for O(d) potential successor states. Still, Path-IS avoids
the two main causes of quickly increasing run time (i.e., the state space explosion
problem for the numerical methods and event rarity for standard simulation).

Method Time Complexity Space Complexity
Numerical O((λ+ µ)τ̄ dnd) O(dnd)

Standard Simulation O(λτ̄dp−1) O(d)
Path-IS O(λτ̄d2n) O(d)

Table 4.15: Time and space complexities for different methods (repairs always enabled).

In the setting of Section 4.2, the number of paths that needs to be evaluated at each
step increases; there are

∏
ri states in the typical set and there are at most d ·

∏
ri

20 When the level of redundancy is very high, the rarity of the event may not primarily be caused by
the ratio λ/µ but by the fact that there is not enough time for all of the components to fail during the
mission time. Fortunately, this is not a common scenario in the analysis of multi-component systems,
but it might be encountered in other contexts.

96 4. NETWORKS OF PARALLEL BIRTH-DEATH PROCESSES

paths inside the typical set that lead to states on the ‘edge’ of the typical set. These
extra paths lead to an increase in the time complexity of the method. This can be
seen by comparing Table 4.15 with Table 4.16.

To speed up Path-IS-G, we used a caching approach: for each state in the typical
set we store the sum of the probabilities of the paths to system failure. This results
in a higher memory complexity but cuts the time complexity in the typical set back
to only O(λτ̄dn) assuming that lookups in the list of stored probabilities do not
contribute to the time complexity (this is possible using cleverly linked lists where
each entry points to all states that can be reached in one transition). Outside the
typical set, the time complexity is again O(λτ̄d2n).

Method Time Complexity Space Complexity
Path-IS-G (no caching) O(λτ̄d3n

∏
r2
i) O(d)

Path-IS-G (caching) O(λτ̄d2n) O(d
∏
ri)

Table 4.16: Time and space complexities for Path-IS-G (repair of type i enabled after ri
components of that type have failed).

4.4.3 Generalisations and Future Work
In this chapter, we have only considered system failures caused by the number of
failures of some component type i reaching a critical level ni. The method is also
applicable with more general failure conditions, such as simultaneous failure of
at least ni components of each type i. More paths to failure may then need to be
considered for a good approximation w — perhaps even a number of paths that
increases exponentially in the number of component types — but many of them
typically have equal probability which makes accounting for them easier. Similarly,
it is straightforward to generalise the extension of Section 4.2 to group repair strate-
gies (see [60]). Another interesting, but more challenging, generalisation is to allow
component interdependence, which occurs, for example, when components share
repair facilities that follow some predefined repair strategy (see also Section 4.3).
Finding the dominant paths in these settings will be the focus of Chapters 5 and 7.

Furthermore, an interesting extension of the method would be to allow the fail-
ure and repair time distributions to be any phase-type distribution. Part of the
work for this is already done, since the Path-IS-G method discussed in Section 4.2
already considers phase-type distributions in the ‘typical’ part of the state-space.
For the rest of the state-space, a change of measure for the phase-type failure and
repair times would be needed; the so-called exponential change of measure [50] can
be expected to work well.

Future work could be to extend the method to the case of very large n (see Sec-
tion 3.2.3), which is an interesting scenario in which numerical methods suffer from
the state space explosion problem. Finally, one could add rewards to the model,
broadening the applicability of the method to a wide range of real-world cases.

CHAPTER 5

Dominant Paths in General Markov Chains

In Chapter 3, we studied importance sampling techniques for several interesting
probabilities in the restricted model class of the birth-death process. One of these
probabilities of interest was πψ(x0), the probability of entering a rare goal set before
a more typical taboo set, starting from x0. The importance sampling change of
measure that we used was based on the dominant paths to the goal set. To obtain
an implementable simulation scheme we used the fact that in birth-death processes
these paths have a very obvious structure. Particularly, we used the fact that in a
birth-death process, one can clearly distinguish between the births that lead towards
the goal set and the deaths that lead away from it, i.e., towards the taboo set. In this
chapter we will consider the very general model class of the Discrete-Time Markov
Chain (DTMC), in which the structure of these paths is not so obvious. The basic
fact that we continue to use is that in order to speed up the simulation procedure,
we want to increase the likelihood of moving towards the goal set with respect to
moving away from it. In order to do this, we need a notion of distance between
states that has meaning in an asymptotic setting where the probability of interest
goes to zero.

The fundamental modelling choice made for this chapter is that all rates pxz
in the transition probability matrix are parameterised by the so-called rarity parame-
ter ε. We are interested in the regime ε ↓ 0, in which transitions that depend strongly
on ε will be taken very rarely — this regime is comparable to the regimes λ ↓ 0 and
µ→∞ for estimating πψ(x0) in the birth-death process of Chapter 3. A clear notion
of the distance of a path is then its total dependence of the transitions in said path
on ε, as we will formalise in Section 5.1. Consequently, the dominant paths that we
use to construct our change of measure are the paths with the lowest ε-distance.
We do not require any structure in the dependence of the transitions in the DTMC
on ε apart from this dependence being polynomial, which means that a priori it is
unclear which paths are dominant. In this setting, the method of Balanced Failure
Biasing (BFB) was proposed and shown to satisfy Bounded Relative Error (BRE, see
Section 5.3) in [108], under the condition that the DTMC in question does not con-
tain so-called high-probability cycles (more on that later). In [80] a combination of
BFB and forcing (see Section 1.3.4) was proven to yield an estimator with BRE for
πψτ̄ , the probability that we not only reach the goal set before the taboo set but also
before a fixed amount of time has passed, in the setting of CTMCs. In this chap-
ter we introduce an algorithm that produces an estimator satisfying the stronger

98 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

property of Vanishing Relative Error (VRE, see Section 5.3) for ψ, even when the
model contains high-probability cycles, and which, when combined with forcing,
also gives an estimator with BRE for ψτ̄ (in practice it often outperforms BFB).

Part of our approach is to carry out a procedure similar to Dijkstra’s algorithm
that is run once, before the actual simulation procedure is started, and which deter-
mines for the relevant part of the state space the function d, a measure of ‘distance’
to the goal set, and the function w�, an approximation of a state’s probability of
hitting the goal set before the taboo set. One may argue that if one resorts to using
methods on the level of the state space anyway, one may as well use the numeri-
cal algorithms of Section 1.1.4 as the runtimes of both Dijkstra’s algorithm and the
iterative numerical methods such as Gauss-Seidel depend (very roughly) on the
number of non-zero entries in the DTMC’s transition probability matrix P . How-
ever, first of all we will argue in this chapter that our Dijkstra-algorithm does not
need to consider the whole state space but only the subset of states that are at most
as far away from x0 in terms of ε-distance as the goal set, and their neighbours.
This may speed up the algorithm significantly, and may yield an implementable
algorithm for DTMCs with an infinite state space. Secondly, some of the results in
this section can also be used for algorithms that only use information obtained from
a high-level description of the model, as we will see in Chapter 7.

Once the algorithm has determined d and w�, we can translate these functions
into a well-performing importance sampling change of measure using Zero Vari-
ance Approximation (ZVA). As discussed in Section 1.3.5, ZVA boils down to sub-
stituting a good approximation w for the true probability into (1.12). In the setting
of networks of parallel birth-death processes of Section 4.1.3 we used the approxi-
mation w∗, based on the ‘straight’ paths. In this section we discuss two candidates
for w in the setting of general Markov chains. The first is the most obvious candi-
date, namely w�. The second is εd, which is more crude than w� but which we use
when we only have information of d — this will be the case in Chapter 7.

In addition to determining for each state the distance of the dominant paths to
the goal set, our Dijkstra-like procedure also removes all high-probability cycles. A
high-probability cycle is a path of non-zero length that starts and ends in the same
state and which consists only of transitions whose distance in terms of ε-orders is
zero. While the existence of high-probability cycles can cause BFB to lose BRE, the
improved versions of BFB proposed in [60] and [61] are intended to cope with this
complication. In [73], which also studies the problem of applying ZVA to reliability
models, the models are assumed not to contain high-probability cycles. Because
our algorithm runs on the level of the state space anyway, we can remove high-
probability cycles without much added effort.

The outline of the rest of this chapter is as follows. In Section 5.1, we will for-
mally describe the modelling assumptions, and introduce the functions d and w�

and the two simulation measures. In Section 5.2, we present an algorithm for find-
ing these vectors, based on Dijkstra’s algorithm, and prove its correctness. In Sec-
tion 5.3 we prove that both simulation measures introduced in Section 5.1 satisfy
properties that can be shown to imply an estimator with BRE. In Section 5.4, we

5.1 Model Setting 99

discuss how the measure based on w implies the even more desirable property of
VRE. In Section 5.5, we obtain an estimator with bounded relative error for πψτ̄ , the
probability that we not only reach the goal set before the taboo set but also before a
fixed amount of time has passed, in CTMCs. Section 5.6 concludes the chapter. We
do not give simulation results in this chapter as the results section of Chapter 6 also
includes results obtained using this chapter’s algorithm.

5.1 Model Setting

Our model is given in terms of a DTMC with a (large, possibly infinite) state space
X . We assume that the system starts in some state x0 ∈ X , and that there is (po-
tentially after merging all states in the goal set into a single state) a single rare state
xb ∈ X . We also assume that there is (again after a potential merge) a single taboo
state xa ∈ X .21 We are no longer interested in the behaviour of the system once the
system hits xb or xa so we assume that these states are absorbing, i.e., have a self-
loop with probability 1. Note that the location of xa and xb in the state space may
not be clear a priori; since large DTMCs are typically described using a high-level
language such as an SPN (see Section 1.1.3), the shape of the taboo and goal sets
may be unclear until the state space is generated explicitly, which we do on-the-fly
while running the algorithm described in Section 5.2.

The complete transition probability structure in the DTMC is given by the ma-
trix (pxz)x,z∈X , which contains for each pair of states x, z ∈ X the probability pxz of
jumping from state x to state z — again, in practice this matrix may be given im-
plicitly through a high-level language. The probabilities pxz depend on ε, the rarity
parameter inherent to the model. Writing f(x) = Θ(g(x)) iff

0 < lim
x↓0

f(x)

g(x)
<∞,

we assume that ∀x, z ∈ X ,
pxz(ε) = Θ(εrxz),

and we assume, without loss of generality, that rxz ∈ N.22 Note that rxz for x, z ∈ X
are fixed parameters of the model. Examples of DTMCs parameterised in this way
can be found in Figures 6.1 and 6.2.

In the remainder of this chapter, we write f(x) = O(g(x)) iff

lim
x↓0

f(x)

g(x)
<∞,

and f(x) = o(g(x)) iff

lim
x↓0

f(x)

g(x)
= 0.

21In practice this is often a state to which all transitions normally going back to x0 are routed.
22We do need to impose that the set of values of rxz that appear in the model is countable for the proof

of Lemma 5.6 to work.

100 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

As described in Section 1.1.2, a path ω is a sequence xω0 , xω1 , . . . , xω|ω| of states in X ,
with |ω| equal to the number of steps in the path. We define ∀x ∈ X

Ωψ(x) , {ω : xω0 = x, ω � ψ, @k < |ω| s.t. (xω0 , x
ω
1 , . . . , x

ω
k) � ψ}, and

πψ(x) ,
∑

ω∈Ωψ(x)

P(ω), (5.1)

where ψ = ¬aU b as defined in Chapter 1. In words, Ωψ(x) is the set of dominant
paths from x, and πψ(x) the probability of the rare event occurring starting in x.
We are interested in finding πψ(x0). We will do this using importance sampling, as
described in Section 1.3. That is, we aim to find a simulation measure Q such that
the resulting estimator given by (1.9) has a variance that is as small as possible.
To judge whether Q has good performance in terms of estimator variance, we will
investigate whether it satisfies the properties of Bounded Relative Error (BRE) and
Vanishing Relative Error (VRE), as defined in Section 1.3.3.

The change of measure technique that we use is ZVA as discussed in Section 1.3.5,
meaning that we use (1.13) but use an approximation w instead of πψ . Our method
for finding a suitable w is to select only a subset of the paths used in the summation
of (5.1), namely the dominant paths. In order to determine which paths to select,
we will define two related measures for the distance between each state and the
rare state xb. When we consider these distance measures, we assume that the high-
probability cycles (as mentioned in the introduction) have already been removed,
giving rise to the probability measure P′ (this is discussed in more detail in Sec-
tion 5.2) First, we define the function d : X → N — intuitively, the smallest number
of ε’s needed to reach xb— of a state x with respect to ψ as

d(x) = min{r : ∃ω ∈ Ωψ(x) s.t. P′(ω) = Θ(εr)}. (5.2)

We say that d(x) = ∞ if Ωψ(x) is empty. We assume that d(x0) > 0. Furthermore,
we also use the function d′, defined as

d′(x) = min{r : ∃ω s.t. xω0 = x0, x
ω
|ω| = x,P′(ω) = Θ(εr)}. (5.3)

In words, whereas d(x) is the shortest distance between x and xb, d′(x) is the short-
est distance between x and x0. Next, we define

Ωrψ(x) = {ω : ω ∈ Ωψ(x),P′(ω) = Θ(εr)}

to be the set containing each path ω with P(ω) of order r that hits the goal state xb
before the taboo state xa, and define the function w� : X → R+ as the probability of
the ‘dominant’ paths in Ωψ :

w�(x) =
∑

ω ∈Ω
d(x)
ψ (x)

P′(ω).

5.1 Model Setting 101

This is the function w� that we substitute into (1.13) to obtain our change of mea-
sure. In general Markov chains, w� is the analogue of w∗ (which is based on the
‘straight paths’) for the networks of parallel birth-death processes of Section 4.1.3.

As mentioned in the introduction, we do not need to run the algorithm on the
entire state space, we only need the states that are at most as hard to reach from x0 as
xb and their neighbours (after removing the high-probability cycles). To formalise
this, we introduce the following two sets:

Λ = {x ∈ X : ∃ω s.t. xω0 = x0, x
ω
|ω| = x, P′(ω) = O(εd(x0))} and (5.4)

Γ = {x ∈ X\Λ : ∃z ∈ Λ s.t. pzx > 0}.

In words: Λ is the relevant part of X , and Γ is the edge ‘around’ Λ, i.e., those states
to which one can jump directly from Λ. We assume that both sets are finite. The
algorithm of this chapter calculates d(x) and w�(x) only for states x ∈ Λ ∪ Γ. This
means that the standard approximation of (1.13) (i.e., usingw� instead of πψ) cannot
be applied when we are in Γ (after all, not all terms in the sum in the denomina-
tor in (1.13) need to be defined in this case). Hence, once we leave Λ we stop using
importance sampling and revert back to Monte Carlo. A consequence is that the sim-
ulation measure Q is now non-Markovian: it is only Markovian until we reach a state
outside Λ. Let n be the time at which we hit a state outside Λ. Then Q is as follows:

Q(xωi → xωi+1) =

pxωi xωi+1

w(xωi+1)∑
z∈X

pxωi zw(z)
if i < n

pxωi xωi+1
if i ≥ n

(5.5)

As mentioned in the introduction of this chapter, we have two candidates for w,
namely w� and εd. While w� is the best choice, we use εd in Section 7 because the
algorithm presented there only determines d. In fact, in Chapter 7 we determine
d for the entire state space, meaning that we do not need to distinguish between
elements inside and outside Λ. This lack of a distinction does not affect the BRE-
property of Chapter 5.3, as will be clear from the proof of Lemma 5.9 (we simply
always have that n = ∞). As a final note, we assume that for each state x in Λ ∪ Γ
it holds that

∃ω ∈ Ω
d(x)
ψ (x) s.t. xωi ∈ Λ ∪ Γ ∀i = 1, . . . , |ω|. (5.6)

Informally, this assumption means that for each state x in Λ or Γ there exists a path
of distance d(x) that goes entirely through Λ and Γ. This assumption is necessary
for the functions d and w� that are determined in Algorithm 5.3 to be correct.23

In the next section, we discuss the algorithm used to determine d and w�.

23A possible way to get around this assumption is to use the approach of Lemma 5.6 where we con-
struct an alternate probability measure P′′ in which we reroute all paths that leave the set of interesting
states directly to the goal state, and determine d under P′′. This is a subject of future research.

102 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

5.2 Dijkstra-based Algorithm

In this section, we will describe the algorithm for determining d and w. The al-
gorithm can be broken down into three main routines, specified formally in Algo-
rithms 5.1, 5.2 and 5.3. Unlike Dijkstra’s algorithm, the algorithm of this section
consists of two phases: a forward phase and a backward phase. The distinction
between the phases will be made clear later in this section. The forward phase is
described in Algorithm 5.1 and the backward phase is described in Algorithm 5.3.
Algorithm 5.2 is a subroutine called by Algorithm 5.1.

The remainder of this section is as follows. We discuss the forward phase in
Section 5.2.1 and the backward phase in Section 5.2.2, both by translating the formal
description of the algorithm into a more intuitive one. In Section 5.2.3 we prove the
correctness of our algorithm.

5.2.1 Forward Phase

In the first phase, we use a procedure based on Dijkstra’s well-known algorithm for
finding shortest paths in a graph [34] in order to determine d, Λ and to remove all
high-probability cycles (as discussed in the introduction of this chapter). In order
to detect the high-probability cycles, we use the function d′(x) which represents the
distance in terms of low-probability transitions from x0 to x in P. Note that this is
different from d, which is the distance in term of low-probability transitions from x
to xb in P′. We compute d in Algorithm 5.3.

Algorithm 5.1 Forward phase.
Require: Markov chain (X , P), source x0, destination xb.

1: Λ := {x0}
2: ∀z ∈ X\{x0} : d′(z) :=∞
3: d′(x0) := 0
4: x := x0

5: P ′ := P . deep copy
6: while d′(x) ≤ d′(xb) do
7: Λ := Λ ∪ {x}
8: for all z ∈ X s.t. pxz > 0 do
9: d′(z) := min(d′(z), d′(x) + rxz)

10: if z ∈ Λ ∧ d′(z) = d′(x) then
11: P ′ := loopDetect((X , P ′), z);
12: end if
13: end for
14: x := arg min{d′(z), z ∈ X\Λ} . if several states are possible,
15: end while . any can be chosen
16: return Λ, P ′

5.2 Dijkstra-based Algorithm 103

Algorithm 5.2 loopDetect((X , P), x′).
Require: Markov chain (X , P), state x′.

1: P ′ := P . deep copy
2: A := {x′}, B := {x′}
3: SA := ∅, SB := ∅
4: while A\SA 6= ∅ ∧B\SB 6= ∅ do
5: ∆A := A\SA,∆B := B\SB
6: SA := SA ∪A, ∀x ∈ ∆A : ∀z ∈ X s.t. rxz = 0 : A := A ∪ {z}
7: SB := SB ∪B, ∀x ∈ ∆B : ∀z ∈ X s.t. rzx = 0 : B := B ∪ {z}
8: end while
9: while A\SA 6= ∅ do

10: ∆A := A\SA
11: SA := SA ∪A, ∀x ∈ ∆A : ∀z ∈ B s.t. rxz = 0 : A := A ∪ {z}
12: end while
13: while B\SB 6= ∅ do
14: ∆B := B\SB
15: SB := SB ∪B, ∀x ∈ ∆B : ∀z ∈ A s.t. rzx = 0 : B := B ∪ {z}
16: end while
17: L := A ∩B
18: D := {x ∈ X\L : ∃z ∈ L s.t. p′zx > 0} . states to which can be jumped from L

19: Solve
[
µxz = pxz +

∑
z′∈L pxz′µz′z, ∀x ∈ L, z ∈ D,

1 =
∑
z′∈D µxz′ , ∀x ∈ L

]
for µxz

20: p′xz := µxz,∀x ∈ L, z ∈ D
21: p′xz := 0,∀x ∈ L, z ∈ L
22: return P ′.

While running the procedure, we iteratively update Λ — this allows us to use Λ to
keep track of the visited states. We initialise Λ = {x0} and d′(x0) = 0. We let x0 be
the current state x. Then, we carry out the following routine until x equals xb: we
add each possible successor state z of x to Λ, and set d′(z) = min(d′(z), d′(x) + rxz)
— i.e., we let the new best value for d′(x) be the minimum between the old best
value and the new possible value. We then set x equal to the element z of Λ that
has not been considered before with the lowest d′(z), and start over. When we have
reached xb, we complete the procedure for all states z with d′(z) = d′(xb) before we
terminate the first phase. The set Λ then meets its definition given in (5.4), and for
each state z ∈ Λ we have that d(z) = d(xb)− d′(z).

If, while running the procedure, we find that a state z has a successor state z′

such that d′(z) = d′(z′), we trigger a loop-detection procedure. The loop-detection
procedure essentially boils down to removing all low-probability transitions from
the relevant part of the DTMC and finding the Strongly Connected Component
(SCC) that contains the states z and z′ that triggered the procedure, using the al-
gorithm as described in [12]. Essentially, we determine A, the set of states that can
be reached from z using low-probability transitions, and B, the set of states from

104 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

Algorithm 5.3 Backward phase.
Require: Markov chain (Λ, P ′), end node xb.

1: Λ′ := ∅
2: ∀z ∈ Λ : w�(z) := 0, d(z) :=∞
3: w�(xb) := 1, d(xb) := 0
4: x := xb
5: Γ := {x ∈ X\Λ : ∃z ∈ Λ s.t. pzx > 0}
6: while Λ′ 6= Λ ∪ Γ do

7: x := z ∈ (Λ ∪ Γ)\Λ′ :

{
d(z) = min{d(x′) : x′ ∈ (Λ ∪ Γ)\Λ′}, and
@x′ ∈ (Λ ∪ Γ)\Λ′ s.t. rzx′ = 0

8: for all z ∈ Λ ∪ Γ do . if several states are possible
9: if rzx + d(x) < d(z) then w�(x) := 0 . in line 7, any can be chosen.

10: d(z) := min(d(z), rzx + d(x))
11: if d(z) = d(x) + rzx then
12: w�(z) := w�(z) + p′zxw

�(x)
13: end if
14: end for
15: Λ′ := Λ′ ∪ {x}
16: end while
17: return d,w�,Γ.

which z can be reached using low-probability transitions. The relevant SCC is then
A∩B. Note thatB is potentially (much) larger than Λ and Γ; it may even be infinite.
In order to avoid the algorithm’s non-termination due to this complication we al-
ternate between carrying out a step for A and a step for B. If we can no longer find
new candidates for A, then A has been determined. Since candidates for L need to
be both in A and B, we from then on force candidates for B to also be in A. We then
terminate if can no longer find candidates for B in A. A similar argument holds for
A and B interchanged. This way, we always terminate in a finite amount of time
because A is finite: this will be proven in Section 5.2.3.

Having determined the SCC, we come up with a new Markov chain with the
same state space and identical probabilities πψ(z) in the states, but with transi-
tion probabilities around the high-probability cycles redistributed so that the new
Markov chain only has low-probability cycles. This can be done using SCC-based
state space reduction techniques described in [1], implemented in line 19 of Algo-
rithm 5.2. Removing this cycle gives rise to a new probability matrix P ′, which is
again updated when we find additional loops in a similar manner.

5.2.2 Backward Phase

We begin the second phase in xb (again, due to the fact that xb is given implicitly
through a high-level description, this may not be trivial without the first phase). We
then keep a list Λ′, and initialise Λ′ = {xb}, w�(xb) = 1, d(xb) = 0 and ∀x ∈ X , x 6= xb

5.2 Dijkstra-based Algorithm 105

we set w�(x) = 0 and d(x) =∞. For each predecessor x of xb that is in Λ ∪ Γ,
we add x to Λ′ if this had not been done already and if d(x) = rxxb we update
w�(x) := w�(x) + p′xxb . We then choose the next state to consider: this is the state
x in (Λ ∪ Γ)\Λ′ (the set of states that have not yet been considered) for which d is
the lowest and for which there does not exist another state z in (Λ ∪ Γ)\Λ′ for which
rxz = 0. The reason is that otherwise, the probability of the paths going from x to z
is never added to x and its predecessors.

We continue performing the same procedure until we have determined w�(x)
for all x ∈ Λ ∪ Γ. Note that we are only able to guarantee that a finite value of
d and a non-zero value of w has been assigned to each state in Λ because of the
assumption (5.6). The reason is that (5.6) guarantees that for each states in Λ ∪ Γ its
shortest paths must pass only through other states in Λ ∪ Γ.

5.2.3 Properties of the Algorithm
In this section we prove that our algorithm satisfies a number of desirable correct-
ness properties. Lemma 5.1 states that our loop detection and removal procedures
do not impact the probability of interest. Lemma 5.2 states that the functions d and
w returned by the algorithm indeed match their definitions. Lemma 5.3 states that
the algorithm indeed removes all high-probability cycles. Lemma 5.4 states that the
algorithm terminates within a finite amount of time.

Lemma 5.1. Let π′ψ(x) =
∑
ω∈Ωψ

P′(ω). Given a discrete-time Markov Chain (X , P),
Algorithm 5.1 returns a Markov chain (X , P ′) such that ∀x ∈ X ,

π′ψ(x) = πψ(x) (5.7)

Proof. The matrix P ′ is constructed iteratively by calls to Algorithm 5.2, so it suffices
to show that (5.7) holds for each individual call to Algorithm 5.2. First note that
πψ(x) can be defined using the recurrence relation

πψ(x) =
∑
z∈S

pxzπψ(z). (5.8)

The matrix P ′ is defined using the following equations from line 19 of Algorithm
5.2:

p′xz = pxz +
∑
z′∈L

pxz′p
′
z′z, ∀x ∈ L, z ∈ D (5.9)

1 =
∑
z′∈D

p′xz′ , ∀x ∈ L (5.10)

Note that pxz 6= p′xz only if x was part of a high-probability cycle, i.e., an element of
the set L defined in line 17 of Algorithm 5.2. Hence, for all states x ∈ X\L, we have

π′ψ(x) =
∑
z∈X

p′xzπ
′
ψ(x) =

∑
z∈X

pxzπ
′
ψ(x). (5.11)

106 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

For all states x ∈ L, we have

π′ψ(x) =
∑
z∈X

p′xzπ
′
ψ(z) =

∑
z∈X\L

p′xzπ
′
ψ(z)

=
∑

z∈X\L

(
pxz +

∑
z′∈L

pxz′p
′
z′z

)
π′ψ(z)

=
∑

z∈X\L

pxzπ
′
ψ(z) +

∑
z′∈L

pxz′
∑

z∈X\L

p′z′zπ
′
ψ(z)

=
∑

z∈X\L

pxzπ
′
ψ(z) +

∑
z′∈L

pxz′π
′
ψ(z′)

=
∑
z∈X

pxzπ
′
ψ(z),

where the second equality holds because we set p′xz = 0 in line 21 of Algorithm 5.2
and the third because of (5.9). Since we now have the same system of linear equa-
tions for π′ψ(x) as the one for πψ(x) given by (5.8), π′ψ(x) and πψ(x) must be equal,
proving the lemma.

Lemma 5.2. The vectors d and w returned by the algorithm satisfy the following require-
ments ∀x ∈ X :

d(x) = min{r : ∃ω ∈ Ωψ(x) s.t. P(ω) = Θ(εr)} (5.12)

w�(x) =
∑

ω ∈ Ω
d(x)
ψ (x)

P(ω). (5.13)

Proof. For (5.12) to be false, one of the following statements must hold:

1. there does not exist a path ω ∈ Ωψ(x) such that P(ω) = Θ(εd(x)), or

2. there exists a path ω ∈ Ωψ(x) such that P(ω) = Θ(εr) with r < d(x).

The first statement is clearly false, as such a path can be found by back-tracking the
way d(x) was calculated by the algorithm. The second statement is false because the
algorithm is essentially an application of Dijkstra’s algorithm on P ′, and Dijkstra’s
algorithm returns shortest paths.

For (5.13), we first prove the following invariant: after each step of Algorithm 5.3 it
holds that for all states x ∈ Λ

w�(x) =
∑

ω ∈ Ω
d(x)
ψ (x)

xω1 ∈Λ′

P(ω), (5.14)

where w�(x) is the value after the states in Λ′ have been considered, not the final
outcome. We will prove this invariant using induction.

5.2 Dijkstra-based Algorithm 107

Initialisation
After the initialisation, Λ′ = ∅ and w(xb) = 1. Since we assumed that xb had a

self-loop with probability 1, this means that the invariant holds.
Induction
Assume that after the ith step, we consider state x ∈ Λ. Consider z ∈ Λ: by the

induction hypothesis, before this step it held that

w�(z) =
∑

ω ∈ Ω
d(z)
ψ (z)

xω1 ∈Λ′\{x}

P(ω).

Since we want to prove (5.14), we need to show that what is added to w(z) during
this step is exactly∑

ω ∈ Ω
d(z)
ψ (z)

xω1 ∈Λ′

P(ω) −
∑

ω ∈ Ω
d(z)
ψ (z)

xω1 ∈Λ′\{x}

P(ω) =
∑

ω ∈ Ω
d(z)
ψ (z)

xω1 =x

P(ω).

We distinguish two cases: line 11 of Algorithm 5.3 can evaluate to true or false. If
it evaluates to false, then d(z) 6= d(x) + rzx. In this case it is obvious that no path
in ψd(z)(z) can jump directly to x and since w�(z) is not updated in this case our
invariant will still hold. So assume that line 11 of Algorithm 5.3 evaluates to true;
in line 12 of Algorithm 5.3, we add p′zxw�(x) to w�(z). By the induction hypothesis,

p′zxw
�(x) = p′zx

∑
ω ∈ Ω

d(x)
ψ (x)

xω1 ∈Λ′

P(ω).

Hence, it remains to show that∑
ω ∈ Ω

d(z)
ψ (z)

xω1 =x

P(ω) =
∑

ω ∈ Ω
d(x)
ψ (x)

xω1 ∈Λ′

p′zxP(ω).

This is true if and only if for each path (z, x, xω2 , . . .) the following two statements
are equivalent:

1. (z, x, xω2 , . . .) ∈ Ω
d(z)
ψ (z) and

2. (x, xω2 , . . .) ∈ Ω
d(x)
ψ (x) and xω2 ∈ Λ′.

First of all, (x, xω2 , . . .) ∈ Ω
d(x)
ψ (x) implies xω2 ∈ Λ′. After all, if d(xω2) < d(x) then

d(xω2) must have been considered before x because we always choose the state that
has not been considered with the smallest distance to xb in line 7 of Algorithm 5.3.
Otherwise, if d(xω2) = d(x) then xω2 must have been considered because otherwise
x could not have been considered as there would exist a state z in Λ\Λ′ s.t. rxz = 0

108 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

(namely z = xω2) which would contradict the condition imposed upon x in line 7 of
Algorithm 5.3.

So, by line 11 of Algorithm 5.3 we know that d(z) = d(x) + rzx. This means that
if 1) is true, that (x, xω2 , . . .) must have length d(x), and similarly that if 2) is true,
that (z, x, xω2 , . . .) must have length d(z). Hence, either both are false or both are
true, proving the invariant.

Lemma 5.3. For the matrix P ′ that is returned by Algorithm 5.2 it holds that there are
no longer any high-probability cycles. That is, for each sequence x0, x1, . . . , xn of states for
which x0 = xn, n > 0, it holds that

lim
ε↓0

p′x0x1
· p′x1x2

· . . . · p′xn−1xn = 0.

Proof. Assume the converse of the statement of the lemma. This converse statement
is equivalent to saying that there exists a S ⊂ X such that all states in this set are
reachable from all other states in the set by a high-probability path. Clearly then,
for all states x′ and x′′ in S, d(x′) = d(x′′). So if one state is considered during
the procedure of Algorithm 5.1, then all other states will be considered before the
procedure terminates. Consider x∗, the last state of S to be considered. All its
successors will be checked, and at least one other state x∗∗ in S will be a successor, or
x∗ could not have been part of the cycle. This successor x∗∗ will have its d assigned
when it was added to Λ, and d(x∗) = d(x∗∗), so in line 11 we call Algorithm 5.2
if had not been earlier. When this happens, all states in S are then identified as
part of the loop by Algorithm 5.2. All transitions within this set are then given zero
probability, meaning that the high-probability cycle is removed.

Lemma 5.4. The algorithm terminates in a finite amount of time.

Proof. We will consider all steps in the algorithms that could take infinitely long
and explain why they do not.

The assignment of d′(x) = ∞ for all x ∈ X in line 2 of Algorithm 5.1 is done
implicitly and does not require knowledge of all states in X .

The while-loop in line 6 of Algorithm 5.1 continues at least until we consider xb.
This happens after a finite number of steps because we only consider other states in
Λ before xb and Λ is finite. Then we continue until the next state x to consider has
d′(x) > d′(xb), which means that this state is outside Λ so this also happens after a
finite amount of time because Λ is finite. We only consider each state once because
considered states are added to Λ and the next state to be considered must be from
X\Λ.

For the for-loop in line 8 we only need to consider those states in X to which we
can jump from the state under consideration. The number of states to which we can
jump is finite because they must be in Λ and Γ and both are finite.

For the while-loops of Algorithm 5.2, note that the state that triggered the call to
Algorithm 5.2 must have been in Λ because we only consider states in Λ in the main
routine. Furthermore, A must be finite because each state in A can be reached from

5.3 Bounded Relative Error 109

a state in Λ with ε-distance zero, and hence would also be in Λ by the definition of
Λ in (5.4). So since A is finite the first while loop will terminate in finite time. If the
while loop of line 9 or 13 is run it will also terminate in finite time because it only
has a finite number of elements from which to select.

The while-loop and the for-loop in Algorithm 5.3 terminate after a finite amount
of time because Λ is finite.

Finally, as long as Λ 6= Λ′ line 7 of Algorithm 5.3 always has an element to
choose from. After all, assume the converse: that for each state z that have not yet
been added to Λ′ there exists another state x′ such that the transition from z to x′

has ε-distance zero. This means that if we choose a state, we can always choose a
transition with ε-distance zero leading to another state not yet considered. Since
there is only a finite number of states left to consider, this means that at some end
we return to a state seen before. This means that a high-probability cycle exists,
which contradicts Lemma 5.3.

5.3 Bounded Relative Error

In this section we show that the change of measure returned by the algorithm in-
deed has bounded relative error. We first prove the technical Lemmas 5.5-5.9 before
proving the main theorem of this chapter.

Lemma 5.5. For both w(x) = w�(x) and w(x) = εd(x), x ∈ Λ, it holds that

w(x) = Θ(εd(x)).

Proof. It is obvious that εd(x) = Θ(εd(x)). For w�(x), we have that

w�(x) =
∑

ω∈Ω
d(x)
ψ (x)

P(ω) =
∑

ω∈Ω
d(x)
ψ (x)

Θ(εd(x)) = Θ(εd(x)). (5.15)

For the first equality we use Lemma 5.2, and for the third equality we use Lemma
5.3, which together with |Λ| <∞ implies that |Ωd(x)

ψ (x)|<∞.

Lemma 5.6. ∑
ω∈Ωψ(x)

P′(ω) = Θ(εd(x)).

Proof. We will use an argument similar to the one used for Theorem 1 of [73]. With
pij(ε) = Θ(εrij) let λij = pijε

−rij , and let λ∗ = max{1, λij : i, j ∈ Λ}. We define the
probability measure P′′ such that

p′′ij =

p′ij if i ∈ Λ,
1 i /∈ Λ and j = xb,
0 otherwise.

(5.16)

110 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

Clearly, ∑
ω∈Ωψ(x)

P′(~x) ≤
∑

ω∈Ωψ(x)

P′′(~x). (5.17)

The only technical remark that we make is that some paths that satisfy ψ that had
zero probability under P′ now have positive probability. This is not a problem,
because our definition of Ωψ(x) in (5.1) does not require that its members have
positive probability under P or P′.

Then,∑
ω∈Ωψ(x)

P′′(ω) =
∑

ω∈Ω
d(x)
ψ (x)

P′′(ω) +
∑

ω∈Ω
d(x)+1
ψ (x)

P′′(ω) + . . .

≤ εd(x)
[
(λ∗)|Λ∪Γ|!|Λ ∪ Γ|!

]
+ εd(x)+1

[
(λ∗)|Λ∪Γ|!|Λ ∪ Γ|!

]2
+ . . .

= εd(x)
∞∑
k=0

εk
[
|Λ ∪ Γ|! · (λ∗)|Λ∪Γ|!

]k+1

= εd(x)

[
|Λ ∪ Γ|! · (λ∗)|Λ∪Γ|!]

1− ε
[
|Λ ∪ Γ|! · (λ∗)|Λ∪Γ|!

] = Θ(εd(x)).

The inequality holds because of Lemma 5.3, which implies that there can only be a
finite number of paths of order Θ(εk) for all k ∈ N. Also,

∑
ω∈Ωψ(x) P′(ω) ≥ w(x) =

Θ(εd(x)) (see Lemma 5.5), meaning that
∑
ω∈Ωψ(x) P′(ω) is both upper and lower

bounded by something that is Θ(εd(x)), proving the lemma.

Lemma 5.7. If w(x) = Θ(εd(x)), then for all x ∈ Λ we have that∑
z∈X

pxzw(z) =
∑

z∈Λ∪Γ

pxzΘ(εd(z)) = Θ(εd(x)).

Proof. Since Λ ∪ Γ has a finite number of elements, the ε-order of the sum equals
the ε-order of its largest element. Let z′ be the state such that pxz′Θ(εd(z′)) has the
lowest ε-order in the sum. Assume that its ε-order is smaller than d(x), then there
exists a path from x via z′ to xb with cost lower than d(x), which contradicts the
definition of d(x) as the ε-order of the shortest path from x to xb. This proves the
lemma.

Lemma 5.8. Let n = min{i : xωi /∈ Λ ∨ xωi = xb}. Let

ln(ω) = rxω0 xω1 + . . .+ rxωn−1x
ω
n
.

Then if w(x) = Θ(εd(x)), we have for all paths Ω ∈ Ωψ(x0) that

P(ω)
P(ω)

Q(ω)
= O

(
εln(ω)+d(z)

)
.

5.3 Bounded Relative Error 111

Proof. First, note that
P(ω) = O

(
εln(ω)+d(xωn)

)
.

The reason is that the ε-distance crossed to reach xωn equals ln(ω) and that d(xωn) is
the shortest ε-distance needed to reach xb from xωn . As for the likelihood ratio P/Q,
we have that

P(ω)

Q(ω)
=

|ω|∏
i=1

pxωi−1x
ω
i

qxωi−1x
ω
i

=

(
n∏
i=1

pxωi−1x
ω
i

qxωi−1x
ω
i

)
·

 |ω|∏
i=n+1

pxωi−1x
ω
i

qxωi−1x
ω
i

 (5.18)

For the first part of (5.18), we have that

n∏
i=1

pxωi−1x
ω
i

qxωi−1x
ω
i

=

n∏
i=1

∑
z∈X pxωi−1z

w(z)

w(xωi)

=

n∏
i=1

Θ(εd(xωi−1))

Θ(εd(xωi))
=

Θ(εd(x0))

Θ(εd(xωn))
.

The first equality follows directly from (5.5) and the second equality from the lemma’s
assumption and Lemmas 5.5 and 5.7. For the second part of (5.18) we have that |ω|∏

i=n+1

pxωi−1x
ω
i

qxωi−1x
ω
i

 = 1

because we continue with standard Monte Carlo after time n. Combining all this,
we have that

P(ω)
P(ω)

Q(ω)
= O

(
εln(ω)+d(xωn)

)
·Θ
(
εd(x0)−d(xωn)

)
= O

(
εln(ω)+d(x0)

)
,

proving the lemma.

Lemma 5.9. If w(x) = Θ(εd(x)), then∑
ω∈Ωψ(x0)

P(ω)
P(ω)

Q(ω)
= Θ(ε2d(x0)) (5.19)

Proof. By Lemma 5.8, we know that∑
ω∈Ωψ(x0)

P(ω)
P(ω)

Q(ω)
=

∑
ω∈Ωψ(x0)

Θ(εd(x0)+ln(ω)). (5.20)

with n and ln as defined in the statement of Lemma 5.8. We can then show (5.19)
using an argument similar to the one made to prove Lemma 5.6, given informally
below. First, by the definition of Λ and d, we know that there exists at least one

112 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

path from x0 to xb with cost d(x0) and that this path never leaves Λ — hence, for
this path ln(ω) = d(x0). So the sum in (5.20) is lower bounded by something that is
Θ(ε2d(x0)).

To establish the upper bound, note that we can decompose the last sum in (5.20)
over all paths in Ωψ(x0) into a countable number of sums over Ω

d(x0)+k
ψ (x0) for

k = 0, 1, . . . because rxz ∈ N for all x, z ∈ X . Each term has a finite number of
elements because of the lack of high-probability cycles, allowing us to upper bound
the last sum in (5.20) by a geometric series that converges to Θ(ε2d(x0)).

Theorem 5.1. If w(x) = Θ(εd(x)), the estimator based on (5.5) has the Bounded Relative
Error property.

Proof. As defined in Section 1.3.3, our estimator has BRE if the relative error (de-
fined as the ratio of the standard deviation of the estimator to its mean) is bounded
from above by a finite constant. Note that this is equivalent to saying that the square
of the relative error, given by

VarQ(LQ · 1ψ)

E2
Q(LQ · 1ψ)

=
EQ(L2

Q · 1ψ)− E2
Q(LQ · 1ψ)

E2
Q(LQ · 1ψ)

=
EP(LQ · 1ψ)

E2
P(1ψ)

− 1 (5.21)

is bounded from above by a finite constant. We have that

EP(LQ · 1ψ)

E2
P(1ψ)

=

∑
ω∈ψ(x0)

P(ω)
P(ω)

Q(ω) ∑
ω∈ψ(x0)

P(ω)

2 =

∑
ω∈ψ(x0)

P(ω)
P(ω)

Q(ω)

(Θ(εd(x0)))2
=

Θ(ε2d(x0))

Θ(ε2d(x0))
= Θ(1),

as the second equality follows from Lemma 5.6 and the third from Lemma 5.9. The
squared relative error equals this quantity minus one, and is hence also bounded
above by a finite constant as ε goes to zero. Since the probability of interest goes to
zero while the relative error stays bounded, we have BRE, proving the theorem.

By Lemma 5.5, we then know that we obtain an estimator with the BRE-property if
we use εd or w� for the approximation w in (5.5).

5.4 Vanishing Relative Error

In the previous section, we showed that we can use either w� or only d (through
εd) to obtain an estimator with the BRE-property. Since w� is obviously a much
more sophisticated approximation for πψ , this raises the question of whether we
can establish stronger results for w� than just bounded relative error. The purpose
of this section is to do just that: we will prove that an estimator using w� has the
property of vanishing relative error.

Formally, we need the following two additional lemmas for VRE.

5.4 Vanishing Relative Error 113

Lemma 5.10. ∑
ω∈Ωψ(x)

P(ω) = w�(x) + o(εd(x))

Proof. We know from Section 5.2.3 that w�(x) =
∑
ω∈Ω

d(x)
ψ (x)

P(ω), and we can use

an argument involving a geometric sum similar to what is used in the proof of
Lemma 5.6 to show that the sum of the probabilities of all other paths is O(εd(x)+1)
and hence o(εd(x)), proving the lemma.

Lemma 5.11. ∑
z∈Λ

pxzw
�(z) = w�(x) + o(εd(x))

Proof. Note that∑
z∈Λ

pxzw
�(z) =

∑
z∈Λ

pxz
∑

ω∈Ω
d(z)
ψ (z)

P(ω) =
∑

ω∈Ω
d(x)
ψ (x)

P(ω) + o(εd(x))

= w�(x) + o(εd(x)).

The second equality holds because for a path to be a shortest path from x to xb, it
must jump to a neighbouring state z of x and then take a shortest path from z. This
proves the lemma.

With these lemmas, we can establish Theorem 5.2.

Theorem 5.2. The estimator based on (5.5), with w ≡ w� as returned by the algorithm of
Section 5.2, has the Vanishing Relative Error property.

Proof. The definition for VRE as given in Section 1.3.3 is that as the probability of
interest goes to zero, the relative error goes to zero along with it. By (5.21), we know
that this means that the quantity EP(LQ · 1ψ)/E2

P(1ψ) goes to one as ε ↓ 0. Note that

lim
ε↓0

EP(LQ · 1ψ)

E2
P(1ψ)

= lim
ε↓0

ε−2d(x0)

ε−2d(x0)
· EP(LQ · 1ψ)(
w(x0) + o(εd(x0))

)2
=

limε↓0 ε
−2d(x0) · EP(LQ · 1ψ)

limε↓0 ε−2d(x0) ·
(
w2(x0) + o(ε2d(x0))

) . (5.22)

The first equality follows from Lemma 5.10. To see why the second equality is justi-
fied, note that by Lemma 5.5 we have thatw�(x) = Θ(εd(x)), so that the denominator
in the final expression of (5.22) is Θ(1). Also, we know by Theorem 5.1 that the ratio
is Θ(1), meaning that the numerator must also be Θ(1). Since both the numerator
and denominator are Θ(1), we can replace the limit of quotients with a quotient of
limits, justifying (5.22).

114 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

For the denominator of (5.22) we obviously have that

lim
ε↓0

ε−2d(x0) ·
(
w2(x0) + o(ε2d(x0))

)
= ε−2d(x0) · w2(x0), (5.23)

so we focus on the numerator, given by

lim
ε↓0

ε−2d(x0) · EP(LQ · 1ψ) = lim
ε↓0

ε−2d(x0)
∑

Ωψ(x0)

P(ω) ·

(
n∏
i=1

pxωi−1x
ω
i

qxωi−1x
ω
i

)
. (5.24)

Note that using Lemma 5.11 and a line of reasoning similar to the one used to es-
tablish Lemma 5.9 we have that(

n∏
i=1

pxωi−1x
ω
i

qxωi−1x
ω
i

)
=

n∏
i=1

w(xωi−1) + o(εd(xωi−1))

w(xωi)

As for
n∏
i=1

(
w(xωi−1) + o(εd(xωi−1))

)
,

note that this equals a sum in which each term is a product of n terms in which
the ith term of the product is either Θ(εd(xωi−1)) or o(εd(xωi−1)). The dominant term is∏n
i=1 w(xωi−1) and the remainder is o(ε

∑n
i=1 d(xωi−1)). In summary, we have that(

n−1∏
i=1

pxωi−1x
ω
i

qxωi−1x
ω
i

)
=

(∏n
i=1 w(xωi−1)

)
+ o(ε

∑n
i=1 d(xωi−1))∏n−1

i=1 w(xωi)

= w(x0) + o(εd(x0)).

Combining this with (5.24) and Lemma 5.10 gives us

lim
ε↓0

ε−2d(x0) · EP(LQ · 1ψ) = lim
ε↓0

ε−2d(x0)
∑

ω∈Ωψ(x0)

P(ω) ·
(
w(x0) + o(εd(x0))

)
= ε−2d(x0)w2(x0),

which together with (5.22) and (5.23) implies that EP(LQ · 1ψ)/E2
P(1ψ) goes to one

as ε ↓ 0, which in turn implies VRE.

5.5 Time-Bounded Probabilities

So far, we have described an approach for estimating the probability of observing
a path that satisfies ψ, i.e., reaching xb before xa in a DTMC. To obtain an efficient
estimator, we use the shortest paths that satisfy ψ. In this section, we investigate
whether the same approach can be used to efficiently estimate ψτ̄ , i.e., reaching xb
before xa before τ̄ time units have passed, in a CTMC. In this setting, it still holds

5.5 Time-Bounded Probabilities 115

that the event of interest is rare if transitions taking the system closer to the taboo
set are much more likely than transitions that lead to the goal set. However, the
added complication is that it is now also a rare event to leave states with an exit
rate that vanishes as ε ↓ 0 before τ̄ has passed. To make this concrete, note that for
the path property ψ in a DTMC we have for all x ∈ X that

πψ(x) =
∑

ω∈Ωψ(x)

P(ω) · P(ψ|ω) =
∑

ω∈Ωψ(x)

P(ω)

where the second equality holds because P(ψ|ω) = 1 for each path ω ∈ Ωψ(x). How-
ever, in a CTMC we have that P(ψτ̄ |ω) does not equal 1 for each path ω ∈ Ωψ(x) —
instead, it equals the distribution function of a sum of |ω| exponentially distributed
random variables where the mean of the ith random variable equals 1/η(xωi−1).
When for all states x ∈ X it holds that η(x) = Θ(1), one easily verifies that the
BRE-property still holds even if all sojourn times are drawn using standard Monte
Carlo (although VRE will no longer hold). However, when it is no longer the case
we need to adjust our approach.

From now on, we assume that for all x ∈ X we have that

η(x) = h(x) · ερx , ρx ∈ N

such that h(x) is independent of ε. It now holds that if for some x in ω we have
that ρx > 0, then P(τ̄ |ω) goes to zero as ε ↓ 0. Before we continue our analysis, it is
important to know what the effect is of the values ρx, x ∈ ω, is on the speed with
which P(τ̄ |ω) goes to zero. This is the subject of Lemma 5.12.

Lemma 5.12. Let the random variables X1, . . . , Xn be exponentially distributed such
that E(Xi) = 1

ηi(ε)
, with ηi(ε) = hiε

ρi , hi > 0 and ρi ∈ N for i = 1, . . . , n. Let
S = X1 + . . .+Xn have cumulative distribution function FS : R+ → [0, 1], and let k =∑n
i=1 ρi. Then it holds ∀τ̄ ∈ R+ that

FS(x) = Θ
(
εk
)
.

Proof. Note that

FS(x) =

∫ τ̄

0

∫ τ̄−y1

0

· · ·
∫ τ̄−

∑n−1
1 yi

0

(
n∏
i=1

hi

)
· e−

∑n
i=1 hiyidyn · · · dy1,

so that

lim
ε↓0

FS(x)

εk
= lim

ε↓0

(
n∏
i=1

hi
εk

)
· lim
ε↓0

∫ τ̄

0

· · ·
∫ τ̄−

∑n−1
1 yi

0

e−
∑n
i=1 hiyidyn · · · dy1. (5.25)

The exchange of limit of products to product of limits in (5.25) is justified because
the first term in the second expression is Θ(1). Hence, it is left to show that the

116 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

second term in the second expression of (5.25) is also Θ(1). Note that because
e−

∑n
i=1 hiyi is positive, we have that

∫ τ̄

0

∫ τ̄−y1

0

· · ·
∫ τ̄−

∑n−1
1 yi

0

e−
∑n
i=1 hiyidyn · · · dy1

≤
∫ τ̄

0

∫ τ̄

0

· · ·
∫ τ̄

0

e−
∑n
i=1 hiyidyn · · · dy1 = Θ(1).

Also,∫ τ̄

0

∫ τ̄−y1

0

· · ·
∫ τ̄−

∑n−1
1 yi

0

e−
∑n
i=1 hiyidyn · · · dy1

≥
∫ τ̄

n

0

∫ τ̄
n

0

· · ·
∫ τ̄

n

0

e−
∑n
i=1 hiyidyn · · · dy1 = Θ(1)

because the region of integration in the second expression is contained in the region
of integration in the first expression (see also the proof of Lemma 2 of [80]). Hence,
the second term in the second expression of (5.25) is bounded from below and above
by something that is Θ(1), meaning that it must be Θ(1) itself, proving the lemma.

Lemma 5.12 tells us that the asymptotic distances r of the transition probabilities
can be compared to the asymptotic distances ρ of the exit rates. I.e., whereas we had
in the DTMC-setting that the distance of a path ω equalled

|ω|−1∑
i=0

rxωi xωi+1
,

we now have that the distance of a timeless path ω equals

|ω|−1∑
i=0

(
rxωi xωi+1

+ ρxωi

)
.

Another way to look at this is to say that the distance of a path is measured by the
sum of the ε-distances of its CTMC-rates pxzη(x). This gives rise to the new distance
measure dτ̄ : X → N, defined as

dτ̄ (x) = min{r : ∃ω ∈ Ωψ(x) s.t. P(ω) · P(ψτ̄ |ω) = Θ(εr)}.

We can determine dτ̄ by running a version of Algorithm 5.1 in which each instance
of rxz is replaced by rxz + ρx. We can then establish the following lemma.

Lemma 5.13. ∑
ω∈Ωψ(x)

P′(ω) · P(ψτ̄ |ω) = Θ(εd
τ̄ (x)).

5.5 Time-Bounded Probabilities 117

Proof. Identical to the proof of Lemma 5.6.

Taking all this into account, we can establish the following theorem.

Theorem 5.3. If w(x) = Θ(εd
τ̄ (x)), the estimator for ψτ̄ based on (5.5) for the transi-

tion probabilities combined with the sojourn times sampled using forcing as described in
Section 1.3.4 has the Bounded Relative Error property.

Proof. Using arguments similar to the ones used in the proof of Theorem 5.1, we
have BRE in this setting if

EP(LQ · 1ψτ̄)

E2
P(1ψτ̄)

(5.26)

is bounded from above by something that is Θ(1). Since we have by Lemma 5.13
that the denominator is Θ(ε2d

τ̄ (x0)), we show that the same holds for the numerator.
Note that

EP(LQ · 1ψτ̄) =
∑

ω∈Ωψ(x0)

P(ω) · P(ω)

Q(ω)
· EP(LQ · 1ψτ̄ |ω).

By (1.11), we also have for all ω ∈ Ωψ(x0) that

EP(LQ · 1ψτ̄ |ω) =

∫ τ̄

0

· · ·
∫ τ̄−

∑|ω|−1
1 yi

0

|ω|∏
i=1

η(xωi−1)e−
∑|ω|
i=1 η(xωi−1)yi(

1− e−η(xωi−1)(τ̄−
∑i−1
j=1 yj)

)−1 dy|ω| · · · dy1

≤
∫ τ̄

0

· · ·
∫ τ̄−

∑|ω|−1
1 yi

0

|ω|∏
i=1

η(xωi−1)e−
∑|ω|
i=1 η(xωi−1)yi(

1− e−η(xωi−1)τ̄
)−1 dy|ω| · · · dy1

=

|ω|∏
i=1

(
1− e−η(xωi−1)τ̄

)
· E(1ψτ̄ |ω)

Let the sets I and J be such that I ∪ J = {1, . . . , |ω|} and that i ∈ I iff η(xωi−1) is
independent of ε and that i ∈ J otherwise. Also, let k(ω) = ρxω1 + . . .+ ρxω|ω|. Then

lim
ε↓0

ε−k(ω)

|ω|∏
i=1

(
1− e−η(xωi−1)τ̄

)
=
∏
i∈I

(
1− e−η(xωi−1)τ̄

)
· lim
ε↓0

ε−k(ω)
∏
i∈J

(
1− e−η(xωi−1)τ̄

)
.

(5.27)

118 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

Hence, with h∗ = max{1, h(xωi−1) : i ∈ J},

∏
i∈J

(
1− e−η(xωi−1)τ̄

)
=
∏
i∈J

 ∞∑
j=1

(−1)j−1

j!
·
(
η(xωi−1) · τ̄

)j
≤
∏
i∈J

 ∞∑
j=1

(
η(xωi−1) · τ̄

)j
≤
∞∑
m=0

(h∗)|J|+m · εk(ω)+m · (|J |)m · τ̄ |J|+m

=
εk(ω) · (h∗)|J| · τ̄ |J|

1− ε · h∗ · |J | · τ̄
= Θ(εk(ω)),

where the first equality follows form the Maclaurin series expansion of ey , y ∈ R+,
the first inequality from the fact that (−1)j/j! ≤ 1 for j = 1, 2, . . ., the second in-
equality from a partitioning of the product of sums with regard to the number of
ε-orders, and the second equality because due to the limit of ε ↓ 0 we can choose ε
small enough for the series to converge. Together with (5.27), this implies that

|ω|∏
i=1

 ∞∑
j=1

(−1)j−1

j!

(
η(xωi−1)τ̄

)j = Θ(εk(ω)).

Since we have that E(1ψτ̄ |ω) = P(ψτ̄ |ω), and that ψτ̄ given a path ω in Ωψ(x0) is
simply the event that a sum of exponentially distributed random variables does
not exceed τ̄ , we can apply Lemma 5.12 to obtain

EP(LQ · 1ψτ̄ |ω) = Θ(εk(ω)) · E(1ψτ̄ |ω) = O(ε2k(ω)).

Combining all this, we have, with l(ω) = rxω0 xω1 + . . .+ rxω|ω|−1
xω|ω|

, that

EP(LQ · 1ψτ̄) ≤
∑

ω∈Ωψ(x0)

P(ω) · P(ω)

Q(ω)
·Θ(e2k(ω))

=
∑

ω∈Ωψ(x0)

Θ(ed(x0)+ln(ω)+2k(ω)) = Θ(ε2d
τ̄ (x0)),

(5.28)

where the second equality follows from Lemma 5.8 (ln is defined as in the statement
of that lemma). The third equality follows from a geometric sum argument similar
to the one made for Lemma 5.6 (i.e., by the definition of dτ̄ , there is at least one path
ω such that d(x0) + d′(xωn) + 2k(ω) = 2dτ̄ (x0), and we can then partition the sum in
the third expression in (5.28) into a countable series of converging sums, allowing
us to upper bound the entire sum by something that is Θ(ε2d

τ̄ (x0))). In doing so, it
proves the theorem.

5.6 Conclusion 119

5.6 Conclusion

In this chapter, we have presented an algorithm for obtaining a well-performing
simulation measure for two interesting probabilities, namely the probability of hit-
ting a rare goal set before a typical set in general Markov chains and the time-
bounded version of this probability for CTMCs. The most restrictive assumption
made on the models is the one of (5.6). However, we hope to resolve the need
for this assumption in further research. Numerical results for the algorithm in this
chapter are presented in the Chapter 6.

120 5. DOMINANT PATHS IN GENERAL MARKOV CHAINS

CHAPTER 6

Variance Reduction for Free

In this chapter, we present two techniques that use knowledge about which paths
are dominant in order to potentially achieve further variance reduction than just the
gain resulting from applying IS. The idea is that this knowledge is obtained ‘for free’
when we run the algorithm used to construct the change of measure of Chapter 5
(although one technique requires that the algorithm is run a second time). Our
probability of interest is still πψ , the probability of entering some rare goal set before
a more typical taboo set, starting from the initial state x0. The main motivation
for the algorithm of Chapter 5 was efficient simulation of πψ using Zero Variance
Approximation (ZVA), where the approximation function was given by w�(x), the
sum of the dominant path probabilities from x to the goal set. Inspired by [59], we
explore in this chapter the idea of using the information to obtain w� to remove the
estimator variance resulting from the estimation of the dominant path probabilities.
As we will explain in this chapter, this idea can also be applied if we use a change
of measure that is not inspired by ZVA — e.g., one inspired by BFB.

The outline of this chapter is as follows: in Section 6.1 we introduce two meth-
ods that can be applied to improve the efficiency of simulation methods: the first
method uses only the knowledge of the dominant paths obtained using the algo-
rithm of Chapter 5, while the second method requires that this algorithm is run
a second time. In Section 6.2 we analyse the performance of these methods. We
demonstrate the findings of Section 6.2 using an illustrative example in Section 6.3
and using simulation results in Section 6.4, both for ZVA and for BFB. Section 6.5
concludes the chapter.

6.1 The Two New Methods

Using the algorithm outlined in Chapter 5, one obtains a new measure Q that im-
plies an estimator with vanishing relative error. While this is a very desirable prop-
erty for an estimator, we can further improve on this by using quantities computed
explicitly while running the algorithm. Note that this method can be applied for
any Q, not just the change of measure of ZVA. As we will see, it requires 1) that we
can identify, given a path, whether this path is dominant and 2) exact knowledge of
the sum of the dominant path probabilities. It is not required that we actually use
this knowledge for the change of measure.

122 6. VARIANCE REDUCTION FOR FREE

Throughout this chapter we will use the following shorthand notation: Ωψ for
Ωψ(x0) as defined in (5.1) and ∆ for the set of dominant paths from x0, i.e., ∆ =

Ω
d(x0)
ψ (x0), and

P(∆) = w�(x0) =
∑
ω∈∆

P(ω).

Recall that we use the short-hand notation Px(ψ) = Px({ω : ω � ψ}). Writing P(ψ)
for Px0

(ψ) and observing that ∆ ⊂ Ωψ , we obtain the following two expressions for
this quantity:

P(ψ) = P(Ωψ ∩∆) + P(Ωψ ∩ ¬∆)

= P(∆) + EP(1ψ · 1¬∆)

= P(∆) + EQ(LQ · 1ψ · 1¬∆)

(6.1)

and

P(ψ) = P(∆) + EQ(LQ · 1ψ · 1¬∆)

= P(∆) + EQ(LQ · 1ψ|¬∆)(1−Q(∆)).
(6.2)

Expression (6.1) contains P(∆), while (6.2) contains both P(∆) and Q(∆). The main
insight is then that the exact value of P(∆) can be or has been computed using the
algorithm of Chapter 5, while Q(∆) can be obtained by running the second phase
— i.e., Algorithm 5.3 — a second time, but under the new measure Q instead of the
original measure. We can use these observations to achieve variance reduction: if
we were to estimate P(ψ) directly using (1.9), we would also incur variance through
estimating P(∆) and Q(∆). However, when these quantities are known, they can be
used directly. Hence, we propose the following two estimation procedures, based
on ideas presented in [59].

The first procedure — which we call the +-method — is based on (6.1): we use
knowledge of P(∆) and estimate the probability contribution of the remainder. To
achieve this, we simulate under the new measure Q, and check during the ith run
of the procedure if sample path ωi was part of ∆. If so, we set the correspond-
ing term in the estimator to zero. Specifically, after having sampled N realisations
ω1, . . . , ωN , we use the following estimator for P(ψ):

π̂+
ψ , P(∆) +

1

N

N∑
i=1

LQ(ωi) · 1ψ(ωi) · 1¬∆(ωi). (6.3)

Since all the sample paths are pairwise independent, the variance of the estimator
under Q is given by

VarQ(π̂+
ψ) = VarQ(LQ · 1ψ · 1¬∆). (6.4)

Writing yi = LQ(ωi) · 1ψ(ωi) · 1¬∆(ωi), the variance of the estimator is estimated by

σ̂2+
Q ,

1
N

∑N
i=1 y

2
i −

(
1
N

∑N
i=1 yi

)2

N − 1
,

6.2 Performance of the Methods 123

which gives rise to the approximate 95%-confidence interval[
π̂+
ψ − 1.96

√
σ̂2+
Q , π̂+

ψ + 1.96
√
σ̂2+
Q

]
. (6.5)

The second procedure — which we call the ++-method — is based on (6.2) and
uses knowledge of both P(∆) and Q(∆). We again generate samples ω1, . . . , ωN ,
but if ωi is in ∆ we discard it, giving rise to the alternative sample ω′1, . . . , ω′M where
M is the number of samples that are not in ∆. The reason is that by doing so,
we remove the variance resulting from estimating P(Ωψ ∩ ¬∆). We then use the
following estimator for P(ψ):

π̂++
ψ , P(∆) +

1−Q(∆)

M

M∑
i=1

LQ(ω′i) · 1ψ(ω′i). (6.6)

The variance of this estimator under Q is given by

VarQ(π̂++
ψ) =

(1−Q(∆))2

M
VarQ(LQ · 1ψ|¬∆). (6.7)

With ui = LQ(ω′i) · 1ψ(ω′i), the variance of this estimator is estimated by

σ̂2++
Q , (1−Q(∆))

2

1
M

∑M
i=1 u

2
i −

(
1
M

∑M
i=1 ui

)2

M − 1
,

which in turn gives rise to the approximate 95%-confidence interval[
p̂++
Q − 1.96

√
σ̂2++
Q , p̂++

Q + 1.96
√
σ̂2++
Q

]
.

In the next section, we compare the performance of these methods.

6.2 Performance of the Methods

In summary, we now have three estimators for πψ , namely the original estimator π̂ψ
(as defined in (1.9)), π̂+

ψ (as defined in (6.3)) and π̂++
ψ (as defined in (6.6)). The main

question is then of course which one should be used in which situation. We answer
this question by pairwise comparison of the estimators in the next three sections.

6.2.1 Comparing π̂ψ to π̂+
ψ

We first compare π̂ψ to π̂+
ψ . Note that we have

VarQ(π̂ψ) =
1

N
VarQ(LQ · 1ψ) =

1

N

(
EQ(L2

Q · 1ψ)− E2
Q(LQ · 1ψ)

)
=

1

N

(
EP(LQ · 1ψ)− P2(ψ)

)
.

(6.8)

124 6. VARIANCE REDUCTION FOR FREE

Analogously,

VarQ(π̂+
ψ) =

1

N

(
EQ(L2

Q · 1ψ · 1¬∆)− E2
Q(LQ · 1ψ · 1¬∆)

)
=

1

N

(
EP(LQ · 1ψ · 1¬∆)− P2(Ωψ ∩ ¬∆)

)
.

(6.9)

Combining the two, we obtain

VarQ(π̂ψ)− VarQ(π̂+
ψ) =

1

N
EP(LQ · 1∆)− 1

N

[
P2(ψ)− P2(Ωψ ∩ ¬∆)

]
.

Both terms in this expression are positive, but whether the result is positive or neg-
ative depends on Q. This is demonstrated in Sections 6.3 and 6.4, in which it turns
out that the +-method of (6.3) is better for BFB and the standard estimator is better
for ZVA for the chosen examples.

6.2.2 Comparing π̂ψ to π̂++
ψ

As for the comparison between π̂ψ and π̂++
ψ , note that we can write

VarQ(π̂ψ) =
1

N
VarQ(LQ · 1ψ)

=
1

N
(EQ[VarQ(LQ · 1ψ|1∆)] + VarQ[EQ(LQ · 1ψ|1∆)])

=
1

N
Q(¬∆) · VarQ(LQ · 1ψ|¬∆) +

1

N
Q(∆) · VarQ(LQ · 1ψ|∆)

+
1

N
VarQ[EQ(LQ · 1ψ|1∆)],

(6.10)

where the second equality follows from the law of total variance. SinceM ≈ N ·Q(¬∆),
we have that

1

N
Q(¬∆) · VarQ(LQ · 1ψ|¬∆) ≈ (1−Q(∆))2

M
· VarQ(LQ · 1ψ|¬∆),

which is exactly VarQ(π̂++
ψ) by (6.7). Since the other terms in the final expression of

(6.10) are positive (variances are always positive), π̂++
ψ will have smaller variance

than π̂ψ as long as the approximation M ≈ N ·Q(¬∆) is justifiable.

6.3 Illustrative Example 125

6.2.3 Comparing π̂+
ψ to π̂++

ψ

Finally, we compare π̂+
ψ and π̂++

ψ . To this effect, we write the variance of π̂++
ψ as

VarQ(π̂++
ψ) =

Q2(¬∆)

M
VarQ(LQ · 1ψ|¬∆)

≈ Q(¬∆)

N
VarQ(LQ · 1ψ|¬∆)

=
Q(¬∆)

N

[
EQ(L2

Q1ψ|¬∆)− E2
Q(LQ1ψ|¬∆)

]
=

Q(¬∆)

N

[
EQ(L2

Q1ψ1¬∆)

Q(¬∆)
−

E2
Q(LQ1ψ1¬∆)

Q2(¬∆)

]

=
1

N

(
EP(LQ · 1ψ · 1¬∆)− P2(Ωψ ∩ ¬∆)

Q(¬∆)

)
.

(6.11)

This expression is easily compared with (6.9), and since Q(¬∆) is smaller than 1 it
holds that the variance of π̂++

ψ is lower than the variance of π̂+
ψ .

In the numerical results of Section 6.4 one indeed observes that π̂++
ψ performs

better than the standard estimator and π̂+
ψ . However, in the setting of Chapter 5 we

typically have that Q(∆)→ 1 as ε ↓ 0, which means that observing a non-dominant
path becomes a rare event in itself. This can be a problem because we cannot con-
struct a confidence interval for π̂++

ψ if we do not observe any non-dominant paths.
Furthermore, if M is small the approximation M ≈ Q(¬∆)N is no longer accurate.
The effects of this will be demonstrated empirically in Section 6.4.2. Before that, we
aim to develop intuition for the quantities introduced in this chapter — this is done
in the following section.

6.3 Illustrative Example

In this section we illustrate the analysis of the preceding sections using a simple
example, namely the example given in Figure 6.1(a). It represents a very simple
birth-death process, as discussed in Chapter 3. Births occur with rate ε, regardless
of the population size, and organisms die with rate 1 − ε. Using the algorithm of
Chapter 5 we obtain

d(x) =

∞ for x = xa,
2 for x = x0,
1 for x = x1,
0 for x = xb

and w(x) =

0 for x = xa,
ε2 for x = x0,
ε for x = x1,
1 for x = xb.

The set of paths in this setting has a very simple form: paths either end up in xa or
xb and while doing so take the transition from x1 back to x0 exactly i times ∀i ∈ N.

126 6. VARIANCE REDUCTION FOR FREE

The probabilities of interest can be easily expressed in closed form:

Px0(ψ) =
∑
ω�ψ

Px0(ω) = ε2
∞∑
i=0

(ε(1− ε))i =
ε2

1− ε(1− ε)

and, similarly, Px1
(ψ) = ε

1−ε(1−ε) . Using this information, the true zero variance
measure of (1.12) can be determined; the result is displayed in Figure 6.1(b).

In Figures 6.1(c) and (d) we depict the simulation measures implied by the two
main IS methods considered in this thesis: Balanced Failure Biasing (BFB) as de-
scribed in Section 1.3.4 (BFB) and the approach based on Zero Variance Approxi-
mation (ZVA) as described in Chapter 5. To apply BFB we need a clear distinction
between failures and repairs; since the example corresponds to a birth-death pro-
cess this distinction is trivial. For ZVA we use the change of measure given by (5.5)
combined with the knowledge of w� given previously. The simulation measures
for BFB and ZVA will be denoted by QBFB and QZVA respectively; whenever Q is
used as a subscript we use the name of the method for brevity; e.g., we write VarBFB
instead of VarQBFB . Note that for a path ω that takes the transition from x1 back to x0

exactly i times, we have

P(ω) = ε2+i(1− ε)i,

QBFB(ω) =
1

41+i
, QZVA(ω) =

εi(1− ε)i

(1 + ε(1− ε))1+2i
,

LBFB(ω) = 4ε2 · (4ε(1− ε))i, and LZVA(ω) =
ε2

(1 + ε(1− ε))1+2i
.

xa x0 x1 xb

ε ε

1− ε 1− ε
(a) Standard Monte Carlo

xa x0 x1 xb

1 1− ε(1− ε)

0 ε(1− ε)
(b) True Zero Variance

xa x0 x1 xb

1
2

1
2

1
2

1
2

(c) BFB

xa x0 x1 xb

1
1

1+ε(1−ε)

0 ε(1−ε)
1+ε(1−ε)

(d) ZVA

Figure 6.1: The illustrating example under four probability measures: (a) the original
measure P, (b) the true zero variance measure, (c) the IS-measure implied by BFB and
(d) the IS-measure implied by ZVA as described in Chapter 5.

6.3 Illustrative Example 127

We first discuss the performance of BFB. By (6.8) we can write the variance of the
standard estimator as

N · VarBFB(π̂ψ) =
∑
ω∈ψ

LBFB(ω)P(ω)− P2(ψ)

=

(
4ε4

∞∑
i=0

4i · (ε(1− ε))2i

)
−
(

ε2

1− ε(1− ε)

)2

=
ε4(3− 8ε+ 16ε2 − 16ε3 + 8ε4)

(1− 4ε2 + 8ε3 − 4ε4)(1− ε(1− ε))2
.

The left term and right term in the third expression are both Θ(ε4), but they do not
cancel out so that the resulting expression is also Θ(ε4). For the estimator π̂+

ψ under
BFB we have by (6.9) that

N · VarBFB(π̂+
ψ) =

∑
ω∈ψ∧¬∆

LBFB(ω)P(ω)− P2(Ωψ ∩ ¬∆)

=

(
ε4
∞∑
i=1

4i · (ε(1− ε))2i

)
−
(

ε3(1− ε)
1− ε(1− ε)

)2

=
ε6(1− ε)2(63− 128ε+ 208ε2 − 160ε3 + 80ε4)

(1− 16ε2 + 32ε3 − 16ε4)(1− ε(1− ε))2
.

Here, both terms in the third expression are Θ(ε6), and because they do not cancel
out the total variance is also Θ(ε6). For the estimator π̂++

ψ under BFB, note that
QBFB(∆) = 1

4 , so that by (6.11) we have that

N · VarBFB(π̂++
ψ) =

∑
ω∈ψ∧¬∆

LBFB(ω)P(ω)− P2(Ωψ ∩ ¬∆)

QBFB(¬∆)

=

(
4ε4

∞∑
i=1

4i · (ε(1− ε))2i

)
− 4

3

(
ε3(1− ε)

1− ε(1− ε)

)2

=
4

3

ε6(1− ε)2(47− 96ε+ 160ε2 − 128ε3 + 64ε4)

(1− 16ε2 + 32ε3 − 16ε4)(1− ε(1− ε))2
.

Again, both terms in the third expression are Θ(ε6) and because they do not cancel
out the result is also Θ(ε6). In conclusion, the difference between π̂ψ and the new
methods (in terms of variance) is of two ε-orders, while the difference between π̂+

ψ

and π̂++
ψ is relatively small.

128 6. VARIANCE REDUCTION FOR FREE

For ZVA, the variance of the standard estimator is, again by (6.8),

N · VarZVA(π̂ψ) =
∑
ω∈ψ

LZVA(ω)P(ω)− P2(ψ)

= (1 + ε(1− ε)) · ε4
N∑
i=0

[(
1 + ε(1− ε)
ε(1− ε)

)i
· (ε(1− ε))2i

]
−
(

ε2

1− ε(1− ε)

)2

=
ε7 · (1− 3ε+ 3ε2 − ε3)

(1− ε(1− ε))2 · (1− ε+ 2ε3 − ε4)
.

Both terms in the third expression are Θ(ε4); however, their difference is Θ(ε7),
which is much lower. For the estimator π̂+

ψ under ZVA we have by (6.9) that

N · VarZVA(π̂+
ψ) =

∑
ω∈ψ∧¬∆

LZVA(ω)P(ω)− P2(Ωψ ∩ ¬∆)

= (1 + ε(1− ε)) · ε4
∞∑
i=1

[(
1 + ε(1− ε)
ε(1− ε)

)i
· (ε(1− ε))2i

]
−
(

ε3(1− ε)
1− ε(1− ε)

)2

.

Here, the left term is Θ(ε5) and the right term is Θ(ε6), resulting in a total variance
of Θ(ε5). For the estimator π̂++

ψ under ZVA we have QZVA(∆) = 1
1+ε(1−ε) , so that

N · VarZVA(π̂++
ψ) =

∑
ω∈ψ∧¬∆

LZVA(ω)P(ω)− P2(Ωψ ∩ ¬∆)

QZVA(¬∆)

= (1 + ε(1− ε)) · ε4
∞∑
i=1

[(
1 + ε(1− ε)
ε(1− ε)

)i
· (ε(1− ε))2i

]

−
(

ε3(1− ε)
1− ε(1− ε)

)2

·
(

1− 1

1 + ε(1− ε)

)−1

=
ε8 · (1− 3ε+ 3ε2 − ε3) · (1 + ε(1− ε)) · (1− ε)

(1− ε(1− ε))2 · (1− ε+ 2ε3−ε4)
.

by (6.11). Both terms in the third expression are Θ(ε5), but their difference is Θ(ε8).
So for ZVA it holds that π̂+

ψ performs several ε-orders worse than π̂ψ , but π̂++
ψ per-

forms an ε-order better than π̂ψ .
The final method that we consider is standard Monte Carlo — its variance is

given by
N · VarP(π̂ψ) = P(ψ)− P2(ψ).

The left term is Θ(ε2) and the second term is Θ(ε4), meaning that the result is Θ(ε2).
In Table 6.1, we display a summary of the results of this section. In Section 6.4

we will observe that the empirical results match the general picture drawn in that
table. The table suggests that if information about the dominant paths has been
obtained through the algorithm of Chapter 5, it is best to use ZVA instead of BFB.

6.4 Numerical Results 129

method origin MC BFB ZVA
normal (1.9) Θ(ε4) Θ(ε2) Θ(ε7)

+ (6.3) Θ(ε6) Θ(ε5)
++ (6.6) Θ(ε6) Θ(ε8)

Table 6.1: Variances of the methods discussed in this chapter.

Furthermore, among the ZVA-methods it holds that ZVA++ is the best. Note, how-
ever, that Q(¬∆) = (ε(1 − ε))/(1 + ε(1 − ε)) = Θ(ε), so that the probability of
observing a non-dominant path vanishes as ε ↓ 0. If only dominant paths have
been observed in a simulation run (i.e., M = 0), then the ZVA++-estimate of πψ
would be P(∆) = ε2 without a well-defined confidence interval. One can compare
this with ZVA, for which the estimate is then ε2/(1 + ε(1 + ε)) with an estimated
variance of 0. The confidence interval is now deceptively narrow (that is, the true
value of πψ is not contained in the CI), but well-defined. More importantly, some
information about the non-dominant paths is included in the ZVA-estimate, as we
discuss below.

To see why the non-dominant paths affect the ZVA-estimate, note that w(x0) =
px0x1

· px1xb and that w(xb) = 1, so that the ZVA-estimate based on only the domi-
nant path ω∗ is given by

px0x1
· px1xb

qx0x1 · qx1xb

= px0x1 · px1xb ·
px1x0

w(x0) + px1xbw(xb)

px1xbw(xb)

= px0x1
· px1x0

· px0x1
· px1xb + px0x1

· px1xb ,

which is exactly the sum of the probability of the dominant path and the path that
falls back once to x0. The intuition of why this happens is that the probability under
QZVA of jumping from x1 to xb is computed by comparing the jumps to x0 and xb in
terms of probability contribution to πψ . To make this comparison, the probability of
the path that falls back to x0 and then goes straight to xb is computed and accounted
for in the likelihood ratio. The result is an estimate that is closer to πψ than P(∆)
(the ZVA++-estimate) is. Hence, the ZVA-estimate is in several ways superior to
ZVA++-estimate when M is very small.

6.4 Numerical Results

In this section we will investigate empirically the efficiency of the methods intro-
duced in Section 6.1. We will consider two model settings: the illustrative example
of Section 6.3 and an artificial model containing a high-probability cycle. All of
these models are small and (intended to be) intuitively clear, consisting of up to
seven states at most.

For each model, we first determine d and w� evaluated for all elements of the
state space and display these values in Tables 6.2 and 6.4. We then display the

130 6. VARIANCE REDUCTION FOR FREE

results of simulation experiments for several values of ε in Tables 6.3 and 6.5. In
each of the tables dedicated to the experiments, we compare a number of simula-
tion approaches. These are standard Monte Carlo simulation (MC), the importance
sampling estimator using BFB and using ZVA as described in Chapter 5. For both
of the IS-procedures we use three versions, the standard version, the +-version in
which we use knowledge of P(∆) and the ++-version in which we use knowledge
of both P(∆) and Q(∆). For all these cases, we display a 95%-confidence interval
for π̂ψ based on the central limit theorem, the total number of simulated runsN and
the number of runs M in which a non-dominant path was sampled (i.e., a path ω
such that P(ω) 6= Θ(εd(x0))). The run time of each simulation experiment was set to
one second.

6.4.1 Illustrative Example

We first attempt to empirically demonstrate the findings of Section 6.3. As such,
we consider the DTMC displayed in Figure 6.1(a). From each state there is only a
single dominant path that leads to xb, which explains the simple structure of w� in
Table 6.2.

x0 x1 x2 x3 xb xa
d 3 3 2 1 0 ∞
w� ε3 ε3 ε2 ε 1 0

Table 6.2: Functions w� and d for the example of Figure 6.1(a).

In Table 6.3, we display the simulation results for this model. As we can see, the
results largely match the results of Table 6.1 although the effect of the hidden con-
stants24 is clearly visible. The importance sampling estimators appear to be un-
biased and clearly outperform the standard MC estimator for small values of ε,
although for small values of ε we may run into numerical problems. This is es-
pecially visible for the ZVA++-estimate for ε = 10−4, for which the confidence in-
terval does not contain the true value ε2/(1 − ε + ε2). This is because a path that
falls back to x0 once should have a likelihood ratio equal to 1.000200030 · 10−8,
while the way we compute this number in Java yields the floating point number
1.0001999899969999 · 10−8 due to numerical imprecision.

In this model, every time a dominant path ω is sampled, the likelihood ratio
LQ(ω) will be the same, so there is not much variance from estimating P(∆). Still,
ZVA++ is noticeably better than ZVA. We also see that ZVA+ is even worse than
normal ZVA; this is because the true probability is much closer to the likelihood
ratios of samples in which the dominant path was observed than to the value 0
which is used instead. On the other hand, BFB+ and BFB++ are not very different
in terms of estimator variance, and both clearly outperform BFB. Also, ZVA still
outperforms BFB++.

24The hidden constant of a function f of ε that is Θ(εk) is the c ∈ R+ for which limε↓0 ε
−kf(ε) = c.

6.4 Numerical Results 131

ε method π̂ CI-bounds N M

10−1
MC 1.09984·10−2 ± 3.79·10−5 29 098 592 28 807 138
BFB 1.098105·10−2 ± 8.37·10−6 16 033 109 12 027 841

BFB+ 1.098999·10−2 ± 1.73·10−6 15 904 766 11 930 959
BFB++ 1.098974·10−2 ± 1.48·10−6 15 832 011 11 875 091
ZVA 1.0989055·10−2 ± 1.39·10−7 19 316 924 1 595 178

ZVA+ 1.098915·10−2 ± 1.44·10−6 20 051 867 1 655 861
ZVA++ 1.09890187·10−2 ± 1.23·10−8 20 016 407 1 652 133

10−3
MC 1.068·10−6 ± 3.44·10−7 34 652 217 34 652 180
BFB 1.000806·10−6 ± 8.6·10−10 15 564 650 11 674 251

BFB+ 1.00099998·10−6 ± 1.9·10−12 15 944 632 11 957 412
BFB++ 1.00099936·10−6 ± 1.68·10−12 14 966 588 11 225 985
ZVA 1.0010000087·10−6 ± 1.88·10−14 21 125 016 21 297

ZVA+ 1.0010064·10−6 ± 1.32·10−11 22 351 332 22 450
ZVA++ 1.0009999989795·10−6 ± 1.3·10−17 22 225 832 22 461

10−4
MC 3.05·10−8 ± 5.98·10−8 32 760 810 32 760 809
BFB 1.000067·10−8 ± 8.68·10−12 15 296 995 11 472 874

BFB+ 1.000100054·10−8 ± 1.96·10−15 15 067 059 11 303 922
BFB++ 1.000099909·10−8 ± 1.67·10−15 15 223 434 11 418 247
ZVA 1.0000999996·10−8 ± 1.05·10−16 20 420 787 2 020

ZVA+ 1.00009767·10−8 ± 4.26·10−14 20 716 099 2 023
ZVA++ 1.0001000000028801·10−8 ± 9.71·10−22 20 245 335 2 049

Table 6.3: Simulation results for example of Figure 6.1(a).

6.4.2 Two Path Model

xa

x0

x1

x2

x3

x4

xb

1
ε2

2ε

1− ε 1

ε

1− 2ε− ε2
1− ε

ε

Figure 6.2: The model with two paths as discussed in Section 6.4.2, under the original
transition probability matrix P .

132 6. VARIANCE REDUCTION FOR FREE

The model of Figure 6.2 is simple, but we use it to demonstrate both the findings of
Section 6.3 and the functioning of our algorithm in the context of high-probability
cycles (as discussed in the introduction to Chapter 5). Note that the DTMC consist-
ing of only xa, x1, x4 and xb and the transitions between these states is equivalent
to the model of Figure 6.1 with slightly different rates. The paths to xb that leave
this subchain are of at least the same ε-orders, so the behaviour of the variances of
the estimators should behave as in Table 6.1. Furthermore, since there is a high-
probability cycle from x2 to x3, the approach of [73] does not work in this situation
(it would assign too much probability mass to the paths going from x1 to x4). Using
the procedure outlined in Chapter 5, we reduce the model of Figure 6.2 to a similar
DTMC where the transition from x2 to xb and the transition from x3 to xb have been
given probability 1. For this DTMC, the functions d andw� are as displayed in Table
6.4, and the resulting DTMC is displayed in Figure 6.3. As in Chapter 5, we call the
transition probability matrix of the new DTMC P ′.

xa

x0

x1

x2

x3

x4

xb

1
ε2

2ε

1

1

1− 2ε− ε2
1− ε

ε

Figure 6.3: The model of Figure 6.2 under the new transition probability matrix P ′ —
i.e., with the high-probability cycle between x2 and x3 removed.

Because there is a high-probability cycle between x2 and x3, BFB will not work well,
as the resulting estimator will without necessity incur extra variance by changing
the transition probabilities px2x3

and px2xb . A possible remedy is to apply the Gen-
eral Biasing Scheme as described in [60], which is specifically constructed to be able
to deal with high-probability cycles. In this section, we simply instruct BFB to sim-
ulate under the old measure in state x2 for the sake of a fair comparison.

The simulation results for this example are displayed in Table 6.5, about which
some interesting observations can be made. First, we see that N , the number of
paths sampled during the one second during which we ran the procedure, de-
creases as ε decreases; this is because we use the values from the unadjusted DTMC,
and as ε decreases, the expected amount of time before the loop between x2 and x3

is left increases. This can be avoided if we use the probability values from P ′ to
plug into (1.12) and the denominator of the likelihood ratio LQ.

Second, for BFB, the speed-up resulting from the analysis of Section 6.1 is again

6.4 Numerical Results 133

x0 x1 x2 x3 x4 xb xa
d 2 2 0 0 1 0 ∞
w� 3ε2 3ε2 1 1 ε 1 0

Table 6.4: Functions w� and d for the example of Figure 6.2.

ε method π̂ CI-bounds N M

10−1
MC 3.65236·10−2 ± 8.73·10−5 17 745 411 17 213 873
BFB 3.6607·10−2 ± 4.83·10−5 5 799 350 3 623 894

BFB+ 3.6577·10−2 ± 2.82·10−5 5 870 600 3 667 872
BFB++ 3.65868·10−2 ± 2.22·10−5 5 800 283 3 625 487
ZVA 3.65864·10−2 ± 5.87·10−6 4 258 653 603 010

ZVA+ 3.65838·10−2 ± 1.51·10−5 4 541 687 643 583
ZVA++ 3.658572·10−2 ± 1.04·10−6 4 460 635 631 720

10−3
MC 3.65·10−6 ± 7.05·10−7 28 222 996 28 222 893
BFB 2.9951·10−6 ± 3.37·10−8 91 014 56 994

BFB+ 3.006111·10−6 ± 2.19·10−10 90 620 56 859
BFB++ 3.006069·10−6 ± 1.71·10−10 90 916 56 551
ZVA 3.0059895·10−6 ± 2.96·10−11 79 714 163

ZVA+ 3.006026·10−6 ± 9.51·10−10 77 054 154
ZVA++ 3.0060059764·10−6 ± 6.13·10−14 77 786 150

10−4
MC — — 27 674 484 27 674 484
BFB 3.05·10−8 ± 1.06·10−9 9 279 5 725

BFB+ 3.0005808·10−8 ± 6.72·10−13 8 914 5 507
BFB++ 3.0005882·10−8 ± 5.19·10−13 9 531 6 060
ZVA 3.0005965·10−8 ± 9.87·10−14 7 151 3

ZVA+ 3.00119·10−8 ± 1.34·10−11 7 577 3
ZVA++ 3.00060002998·10−8 ± 1.99·10−17 7 894 2

10−5
MC — — 28 046 932 28 046 932
BFB 3.083·10−10 ± 3.59·10−11 859 545

BFB+ 3.0000831·10−10 ± 2.62·10−15 863 554
BFB++ 3.0000515·10−10 ± 1.67·10−15 905 567
ZVA 3.00006037·10−10 ± 3.06·10−16 735 0

ZVA+ 3.000·10−10 ± 0 753 0
ZVA++ 3.000·10−10 — 695 0

Table 6.5: Simulation results for example of Figure 6.2.

clearly visible. Third, we see that the methods of Section 6.1 lead to considerable
variance reduction for ZVA when ε is moderately small (at ε = 10−3, there is a fac-
tor 20 improvement from ZVA to ZVA++), but when ε becomes so small that non-
dominant paths are typically not sampled any longer (remember that we estimate
the contribution of EQ(LQ · 1ψ|¬∆) using a measure constructed for the dominant

134 6. VARIANCE REDUCTION FOR FREE

paths), we often end up with (zero or) one sample(s), and no reasonable confidence
interval can be given. Using the standard ZVA estimator, no non-dominant paths
are sampled either, but some information about the non-dominant paths turns out
to appear in the likelihood ratios (see the discussion at the end of Section 6.3), which
means that the standard ZVA is even better than the one combined with the tech-
niques of Section 6.1, where this information is thrown away in favour of the exact
computation of P(∆).

6.5 Conclusions

We presented two new methods that can be used to achieve variance reduction for
IS-methods by using information about the dominant paths: the +-method and the
++-method. The +-method can be applied directly after running the algorithm of
Chapter 5, whereas the ++-method requires that it is run a second time. We demon-
strated their potential gain (or loss), where the ++-method stands out particularly
positively. However, when the number of non-dominant paths sampled is very low,
the original ZVA-estimator is to be preferred. Unfortunately, it may be difficult to
say something about this beforehand.

CHAPTER 7

Dominant Paths in Stochastic Petri Nets

The topic of the previous four chapters has been importance sampling where the
change of measure is based on the dominant paths to failure — in this chapter we
focus on a method in which we obtain information about the dominant paths us-
ing a high-level description of the model. We are again interested in estimating πψ ,
the probability of entering a rare goal set before a more typical taboo set. As in
Chapter 5, we assume that all the transition probabilities in our model depend on
the rarity parameter ε, and we again use the ε-distance function d that was defined
in (5.2) to obtain insight into which paths to the goal set are the most likely. Pre-
viously, we presented an algorithm to find d that worked at the level of the state
space of the Markov chain. The state space of the Markov chain can be very large
(even infinite), which may prove to be problematic for the Dijkstra-based algorithm
of Chapter 5 as its runtime depends strongly on the size of the state space. The
algorithm only needs to consider a subset of the state space, but even this subset
may be too large for the algorithm to be feasible. In this chapter we use the fact that
in practice the chain often has enough structure to allow for implicit specification
using a high-level description language — information about the dominant paths
to failure is often more easy to obtain from the high-level than from the low-level
description. Classical examples of such high-level description languages are the
Stochastic Petri Nets (SPNs) [2], Stochastic Activity Networks [103] (SANs) and the
Architecture Analysis & Design Language (AADL) [38]. In this chapter we focus
on SPNs as described in Section 1.1.3.

The essence of our algorithm is that we use the description as an SPN to reduce
the state space of the model into a (much smaller) graph in which each node rep-
resents a set of states for which the dominant paths to the goal set have the same
form. What we mean precisely by ‘paths having the same form’ will be described in
the remainder of this chapter. Given the path form of the dominant path from a
state to the goal set, the function d in this state is easily computed. As in Chapter 5,
the algorithm described in this chapter is a pre-processing step that we run once,
before we simulate, in order to determine the change of measure.

The structure of the rest of this chapter is as follows: in Section 7.1, we explain
the position of this chapter in the context of the earlier work. In Section 7.2 we dis-
cuss the modelling assumptions and importance sampling scheme that are specific
to this chapter. The core algorithm that determines the distance function d in an
automated way is the topic of Section 7.3. Section 7.4 contains a simulation study

136 7. DOMINANT PATHS IN STOCHASTIC PETRI NETS

involving the simple model and a more realistic model. In Section 7.5, we prove
that the algorithm works correctly in the sense that the calculated distance function
d in a state indeed equals the shortest ε-distance of a path from that state to the goal
set. In Section 7.6, we discuss a few challenges associated with the new method and
ways to overcome them.

7.1 Context within the literature

Other efficient simulation methods that use the high-level description of a system
have been proposed and implemented earlier in the literature. One way to obtain
knowledge about the way the system progresses toward the goal set is, of course, to
divide the transitions in the SPN into failure and repair transitions that respectively
take the system towards or away from the goal set — one can then apply failure
biasing as described in Section 1.3.4. This has been implemented in, among others,
SAVE (see [14]) and in UltraSAN [83], the predecessor to the tool Möbius [21].

One variation of failure biasing that is especially noteworthy in the context of
this chapter is distance failure biasing [18]. It is based on a notion of distance simi-
lar to the function d of (5.2). However, the technique presented in [18] can only be
applied to a very narrow class of models (namely models with independent compo-
nent types) and the gain compared to failure biasing may not justify the numerical
effort of the minimal cut algorithm that is used (see also the discussion in [81]).

Another technique is to split the simulation effort into two different stages: one
to obtain an idea about the typical behaviour to the rare set and one to use this
knowledge in an importance sampling scheme. This idea forms the basis of the
cross-entropy method for importance sampling [55, 100] and Kelling’s framework for
RESTART in SPN [65]. The cross entropy method has recently been implemented
in the PLASMA-platform [56] for statistical model checking.

For RESTART and splitting, one implicitly divides the state space of the model
in several level sets. Examples of how to determine these level sets are to let the
user specify them by hand [78, 110], or to use a two-step approach similar to the
one underlying the cross-entropy method [65]. The splitting framework has been
implemented in the Stochastic Petri Net Package [110] and the tool TimeNet [118].
The methods based on this principle are largely heuristic in nature.

7.2 Model Setting

The structure of this section is as follows. In Section 7.2.1 we discuss how the notion
of ε-distances appears in the setting of SPN-models. In Section 7.2.2, we introduce
an example of an SPN that we use throughout this chapter. In Section 7.2.3, we
discuss the performance property of interest, and we discuss simulation in Sec-
tion 7.2.4.

7.2 Model Setting 137

7.2.1 Reliability Modelling Using Petri Nets
As described in the introduction, the model class that we consider in this chap-
ter is that of the SPN as discussed in Section 1.1.3. In particular, states will be
called markings and are written as vectors, i.e., ~x for a state instead of x, where
~x = (x1, . . . , x|P |), with |P | the number of places. As in Chapter 5, the transition
probabilities are functions of ε. Specifically, let λi(~x), ~x ∈ X , be the exponential rate
of transition ti, then, even though we allow λi(~x) to depend on the marking ~x, we
assume that numbers ri exist such that for all ~x ∈ X , λi(~x) = Θ(εri), i.e.,

0 < lim
ε↓0

λi(~x)

εri
<∞. (7.1)

The cost of firing transition ti in state ~x is given by κi(~x) defined by

κi(~x) =

{
ri − min

j=1,...,|T |
{1j(~x)rj} if transition i is enabled in ~x

∞ otherwise

where 1i is defined as in (1.1). The cost of a path through the state space is then the
sum of the costs of firing the individual transitions. The cost of firing transition t is
simply the distance added to a path to create a new path in which one state change
more appears caused by firing t.

7.2.2 Running Example
The running example that we use throughout this chapter is a reliability model
equivalent to a two-node M/M/1 tandem queue. It can be seen as a single compo-
nent with an infinite number of hot spares; when a component or a spare breaks
down, two repair phases have to be completed consecutively. Component and
spares fail according to a Poisson process with rate λ = Θ(ε2). The times between
first phase repairs are exponentially distributed with rate µ = Θ(ε). The times be-
tween second phase repairs are exponentially distributed with rate ν = Θ(1). The
transitions causing these three types of state changes are called t1, t2 and t3 respec-
tively. We assume that none of the rates depend on the marking, and that both
queues will be empty most of the time. This system can be modelled using an SPN
as depicted in Figure 7.1. The typical rare event that we are interested in is having
n or more components awaiting the second phase of repair before all components
have been repaired, starting from the first breakdown of the main component. This
rare event is an instance of ψ = ¬aU b, i.e., seeing a goal or b-state before seeing a
taboo or a-state, where (0, 0) is the only a-state and all states (·, z) with z ≥ n are
b-states.

7.2.3 Problem Setting
Since we are interested in the estimation of πψ , the probability of reaching the goal
set before the taboo set, we need a clear definition of the goal and taboo sets. From

138 7. DOMINANT PATHS IN STOCHASTIC PETRI NETS

t1 t2 t3

1
1

1
1

> 0 > 0

place

transition

token

pre-incidence

post-incidence

guard arcs

Figure 7.1: Tandem queue, depicted in the form of a stochastic Petri net. Transition t1
fires according to rate λ, t2 according to rate µ and t3 according to rate ν.

now on, we will call elements of the taboo set a-markings and elements of the goal
set b-markings. Since the state space is not specified explicitly, the goal and taboo
sets need to be specified at the high level. The formalism that we use to achieve this
is that of guards, the same formalism that we used to specify the firing conditions
of transitions in Section 1.1.3. Formally, we let an a-guard be a 3-tuple (p, β, ./).
With Ga = {g1

a, . . . , g
|Ga|
a } ⊂ P × N × {≤,≥} as the set of a-guards, we then say

that a marking ~x = (x1, . . . , x|P |) is an a-marking if for each g = (pi, β, ./) ∈ Ga it
holds that xi ./ β. The b-markings are then defined analogously. As mentioned in
Section 1.1.5, if a marking is both an a- and b-marking, we will consider it to be a
b-marking only.

Note that the definition of a-markings and b-markings given above imposes a
particular structure upon the taboo and goal sets: they are only allowed to be hyper-
rectangles with edges orthogonal or parallel to the axes of the state space N|P |. In
other words, they must be sets of points in the interior of a Cartesian product of
convex subsets of R. An example of a set that is not a valid taboo or goal set in
the model of Section 7.2.2 is the set of all points (x1, x2) such that x1 + x2 ≥ n for
some n ∈ N.25 We note here that our algorithm still works when we allow the taboo
set to be any union of taboo sets defined as above (similarly for the goal set). The
second case study given in Section 7.4 has a non-convex goal set which is a union
of hyper-rectangles as discussed above.

7.2.4 Efficient Simulation
As in earlier chapters, the change of measure used in this chapter is constructed
using ZVA as discussed in Section 1.3.5, i.e., approximation of the zero variance
change of measure given by (1.13). In this chapter we use the approximationw = εd,
giving rise to the following measure Q:

q~x(i) = Q(~x→ ~x+ ~ui) =
p~x(i)εd(~x+~ui)∑|T |
j=1 p~x(j)εd(~x+~uj)

, (7.2)

where p~x(i) is defined as in Section 1.1.3. The change of measure of (7.2) boils
down to ’scaling out’ the ε-dependence of the transitions in the dominant paths.

25It may be possible to get around this restriction if a third place p3 is added to the net such that each
time t1 is fired a token is placed in p3 and a token is removed each time t3 is fired.

7.3 Determining the Distance Function 139

Under some assumptions such as the absence of high-probability cycles and Λ —
the set of states reachable from x0 with cost d(x0)— being finite this produces an
estimator with the BRE-property (see Section 5.3) by Theorem 5.1. Hence, the only
remaining challenge is to find d(~x) for each possible marking ~x. This will be the
topic of Section 7.3.

7.3 Determining the Distance Function

In this section we discuss an algorithm for finding the function d as defined in (5.2).
Our aim will be to partition X into zones such that for each zone, all the states in
this zone have a similar cost function d in a sense to be detailed below. Formally,
we define a zone z to be a set of constraints {cz1, . . . , cz|z|} where constraints are as
defined in Section 1.1.3. Let the zone area Xz be the set of states that satisfy all
constraints in z.26 The idea is then to find a set of zones Z such that the zones areas
Xz, z ∈ Z, form a partition of X and that we can find functions dz(~x) that give an
easy expression for the distance to Xb of all states ~x ∈ z.

Particularly, we aim to construct a zone graph; a graph where the nodes corre-
spond to the zones of Z and for which the additional condition holds that there is
an arc from zones z to z′ if and only if for each state ~x ∈ Xz we can reach some state
in z′ through repeated firing of a single transition. We will call such a repeated firing
a stutter step, as in, e.g., [6].

Furthermore, we want the shortest path from any state in a zone z to Xb to
correspond to the same path through the zone graph. Finally, we want the cost in
terms of ε-orders of firing the transition of the stutter step to be the same in all states
in the same zone set. If all these conditions hold, then for each zone z we can find
a function dz that is the same linear function for all ~x ∈ Xz (a function f is linear if
f(~x) = ~α T~x + β for some ~α ∈ R|P | and β ∈ R). In this section, we will clarify how
this can be done.

To make the preceding concrete, consider the running example of Section 7.2.2. The
first two zones that we create are Xa and Xb; in particular, Xb consists of the states in which
x2 ≥ n; we assume n ≥ 3. In the state (1, n− 1), t2 needs to fire once to reach Xb, and the
cost of this step is 1. The reason is that the rate at which t2 fires is one ε-order higher than
that of t3. In (2, n− 2), we need to fire t2 twice, giving a total cost of 2. The same holds for
all states (y, n − y), y ≥ 1; we fire t2 y times and the total cost is y. It then makes sense
to group all these states together in a zone. However, for (n, 0), we need to fire t2 n times,
but the total cost is n− 1 as t2 does not need to compete against t3 in the first step. Hence,
(n, 0) and (n− 1, 1) will not be in the same zone. The complete set of zones resulting from
the algorithm developed in this section, where for each zone we display its cost function and
shortest path to the taboo set, is illustrated in Figure 7.2.

Each path through the zone graph corresponds to a path form in the state space
(the concept of path forms will play a particularly important role in Section 7.5). In

26We sometimes abuse this terminology by saying that a state x is inside a zone z; by this we mean
that x is in the zone area Xz .

140 7. DOMINANT PATHS IN STOCHASTIC PETRI NETS

Section 7.3.1, we will outline the main loop of the algorithm. An initial partitioning
is always necessary, as we will discuss in Section 7.3.2. However, this initialisation
alone is not sufficient. It may be that it is not possible for all markings in an initial
zone to reach another zone by the same stutter step; this is the topic of Section 7.3.3.
Also, there may exist markings within a single zone for which the shortest path
follows a different sequence of stutter steps, as we will discuss in Section 7.3.4. In
Section 7.3.5 we discuss how we update some global variables after each call to the
main loop.

7.3.1 Main Loop

Let a stutter step s be a triple (zo, tj , z
d), where zo is the source/origin zone, zd is the

destination zone and tj is the transition that is repeatedly fired (we note here that a
list of global variables such as zo and zd is given in Table 7.1). The algorithm works
as follows: we keep a list S of stutter steps that could be part of shortest paths. After
initialising the list, we repeatedly take stutter steps s out of S and check whether
for all markings in the origin zone of s it holds that

1) we can indeed reach the destination zone of s using only the given stutter
step, and

2) the new distance function indeed gives shorter distance than what was known
before.

If not, we split the source zone and (potentially) add new stutter steps to S. Finally,
we discard s, pick a new stutter step, and repeat until S is empty. The precise way
in which this is done is given by Algorithm 7.1.

Algorithm 7.1 Main loop.
1: initZoneGraph()
2: while S 6= ∅ do
3: s = (zo, tj , z

d) := some element from S
4: possibilitySplit(s)
5: if dzo 6= unassigned then costSplit(s)
6: update();
7: end while

7.3.2 Initialisation Phase (initZoneGraph)

During the initialisation phase, the state space is divided into zones such that

(a) from all states in the same zone set the same transitions are enabled, and

(b) the states in a zone set are either all in Xa, all in Xb, all in both, or all in neither.

7.3 Determining the Distance Function 141

Global Variables
Z the set of zones
V the set of (stutter) steps connecting the zones
S set of steps to consider
s step currently under investigation
y number of times ti is fired at zone switch
ρ boolean indicating whether s was relevant
Zo set of new zones due to s
dz distance function in zone z
dz distance function in zone z
zo source node of a step s
zd destination node of a step s
zn zone in Zo that can reach zd by firing ti

and for which d is lower than known previously
θz the path form corresponding to the distance

function in zone z (see Section 7.5)
D The set of path forms considered so far

(see Section 7.5).

Table 7.1: List of global variables used in the algorithm.

z5

...

n− 1

n

1

0

x2 ↑

...

...

0 1 n. . . → x1.

d(x) = 0

d
=

0

z31

d(x) = n− x2

z
30

d(x) =
n−
x
2

d(x) = 2n− 1− x1

d(x) = 3n− 3x2 − 2x1

z321

d(x) = 2n− 1− x1

λ = Θ(ε2)

ν = Θ(ε0)

µ = Θ(ε1)

d = n− 1

d
(x

)
=

3n
−

3x
2

d
(x

)
=

2n

z320

Figure 7.2: The final result of a call to the algorithm.

142 7. DOMINANT PATHS IN STOCHASTIC PETRI NETS

Condition (a) implies that the cost of firing a transition is always the same in a zone
(because the cost depends on which other transitions can be fired). Hence, instead
of the κj(~x) of (7.1) we can write κj(z) where κj(z) = κj(~x) for all ~x ∈ Xz . During
the initialisation we can already assign distance∞ to the states in Xa and 0 to the
states in Xb. Furthermore, we initialise the stutter step list S during this phase; its
initial elements will be those stutter steps that directly lead intoXb. The precise way
in which all this is done is given in Algorithm 7.2.

In line 2 of Algorithm 7.2, we use the negation¬c of a constraint c. If c = (α, β,≤),
then its negation is given by ¬c = (α, β + 1,≥), and if c = (α, β,≥) then ¬c =
(α, β − 1,≤). If all elements of α are at least 1, then the resulting zone sets X{c} and
X{¬c} are each other’s complements with respect to X .

Lines 9 and 10 are not necessary for the proper functioning of the algorithm
but aid understanding of the proof of correctness. They are discussed further in
Section 7.5.

Algorithm 7.2 initZoneGraph()
1: C := {c = (p, β, ./) : (p, ·, β, ./) ∈ G ∨ c ∈ Ga ∪Gb}
2: Z := {z ∈ Z : ∀c ∈ C : c ∈ z ∨ ¬c ∈ z,Xz 6= ∅} . Z = all possible zones
3: V := {(z′, ti, z′′) : z′, z′′ ∈ Z, z′ 6= z′′,∃~x ∈ Xz′ , ~x+ ~ui ∈ Xz′′ , ti ∈ T}
4: Za := {z ∈ Z : ∀~x ∈ Xz : ~x ∈ Xa}
5: ∀z ∈ Za : dz :=∞
6: ∀z ∈ Za : θz = ∅
7: Zb := {z ∈ Z : ∀~x ∈ Xz : ~x ∈ Xb}
8: ∀z ∈ Zb : dz = 0
9: ∀z ∈ Zb : θz = (z) . see Section 7.5

10: D := {θ : θ = (z), z ∈ Zb} . see Section 7.5
11: S := {v ∈ V : v = (z, ·, z′), z /∈ Za, z′ ∈ Zb}

For the running example as displayed in Figure 7.1, the transition structure first gives
us four initial zones: z0 where only t1 can fire, z1 for t1 and t2, z2 for t1 and t3, and z3

for all three. The zone structure resulting from a call to initZoneGraph() is displayed in
Figure 7.3(a). We obtain two additional zones, z4 and z5, to distinguish Xb. S is initialised
with all stutter steps leading into these two zones; the only stutter steps satisfying this
requirement are the two t2-stutter steps going from z3 into z4 and z5.

7.3.3 Divide Zones by Path Existence (possibilitySplit)

To determine the cost of a stutter step s = (zo, tj , z
d), we need to determine the

number of times y that tj must fire to take a marking in zo to zd. This is done by
findNumberOfTransitions. The main idea is to find a function y(~x) (written as
y for brevity) such that after firing tj y− 1 times, the marking is still in zo, and after
firing one more time the marking is in zd. In order to find this number, we choose
any constraint c1 from zo and c2 from zd that exclude each other, i.e., Xzo ∩ Xzd = ∅,
and choose y to be the smallest number of firings to enable c2. Since all constraints

7.3 Determining the Distance Function 143

(a)

z0 z1

z3z2

z4 z5

(b)

z0 z1

z30 z31

z32

z2

z4 z5

(c)

z0z0 z10z11 z12

z30 z31

z32

z20

z21

z4 z5

Figure 7.3: Figures (a-c) depict the zones after several iterations of the algorithm.

are non-strict inequalities, y is chosen such that ~x + y~uj exactly satisfies the con-
straint. The remaining constraints in zo and zd then impose restrictions on ~x that
must be satisfied in order for this stutter step to be possible.

Algorithm 7.3 possibilitySplit().
Require: stutter step s

1: (c1, c2) := some two constraints such that

1) c1 ∈ zo, 2) c2 ∈ zd and 3) X{c1} ∩ X{c2} = ∅
2: y := findNumberOfTransitions(c2,~ui)
3: C1 := {c : (c = [~a(~x+ (y − 1)~ui) ./ b]) ∧ ([~a~x ./ b] ∈ zo\c1)}
4: C2 :=

{
c : (c = [~a(~x+ y~ui) ./ b]) ∧

(
[~a~x ./ b] ∈ zd\c2

)}
5: C := C1 ∪ C2

6: Zo := {z : ∀c ∈ C : c ∈ z ∨ ¬c ∈ z ∧ ∀c ∈ zo : c ∈ z ∧ ∃~x ∈ X : ~x ∈ Xz}
7: zn := z ∈ Zo : ∀c ∈ C : c ∈ z
8: dzn(~x) := dzd(~x+ y~ui) + yκzo(j)

Assume that we happen to first consider the µ-stutter step from z3 to z4. After the
initialisation phase, there are two pairs of constraints from z3 and z4 that exclude each
other; the pair x1 ≥ 1 and x1 ≤ 0, and the pair x2 ≤ n− 1 and x2 ≥ n. If we consider the
first pair, we end up with y = x1. The two constraints that we end up through lines 4 and
5 of Algorithm 7.3 are x1 + x2 − 1 ≤ n − 1 and x1 + x2 ≥ n. If we would consider the
second pair, we would have found y = n− x2, leading to the same restrictions on x1 + x2.

In line 5, we construct the set C of constraints that must be satisfied for the
stutter step s to be taken. We do this by letting C be the union of C1, the set of
constraints that impose that after y − 1 firings of ti we are in zo, and C2, the set of
constraints that impose that after y firings of ti we are in zd. Given C, the zone zo

may need to be subdivided such that one zone remains in which the stutter step
s is always possible. This is done in line 6 of possibilitySplit; all zones that
consist of combinations of constraints in C or their negations are considered. If
such a zone is non-empty (which is checked using an Integer Linear Programming

144 7. DOMINANT PATHS IN STOCHASTIC PETRI NETS

(ILP)-solver, although this can be computationally expensive), it is added to Zo, the
set of new zones. The zone zn is the subzone (i.e., a subset in terms of constraints)
of zo for which s was possible.

Since we obtained the additional constraints x1 + x2 ≤ n and x1 + x2 ≥ n for the run-
ning example, we obtain three new non-empty zones; z30, z31 and z32, all depicted in Fig-
ure 7.3(b). Of those, z30 has cost dz30

(~x) = x1 or, equivalently, dz30
(~x) = n− x2, depend-

ing on which of the two constraint pairs was considered. The other two zones do not have
any cost assigned yet. When the function update in Algorithm 7.1 is called, the stutter
steps from z1, z2, z31 and z32 to z30 are added to S. Furthermore, the stutter step from z3

to z5 is removed, as z3 no longer exists. It is replaced by the µ-stutter step from z31 to z5.
Upon further calls to possibilitySplit, the zone z1 is subdivided into three new

zones and z2 into two new zones, and distance functions are assigned to all. This is dis-
played in Figure 7.3(c). Furthermore, zones z31 and z32 have distances assigned to them.
In particular, we mention the distance function of z32: dz32

(~x) = 3n − 2x1 − 3x2. In the
next section, z32 is split into two zones, only one of which retains this distance function.

7.3.4 Divide Zones by Costs (costSplit)

When the algorithm as described so far is executed, it will consecutively consider
zones to which no distance function has yet been assigned, split them and assign
costs to them. However, when a zone is considered that already has a distance func-
tion assigned to it, the new path may be the shortest only for a subset of the zone.
We need costSplit for these situations.

Algorithm 7.4 costSplit()
Require: step s

1: cn := dzn(~x)− dzo(~x) < 0
2: z′′ := zn ∪ {¬cn}
3: zn := zn ∪ {cn}
4: dz′′(~x) := dzo(~x)
5: if ∃~x ∈ X : ~x ∈ Xzn then
6: if @~x ∈ X : ~x ∈ Xz′′ then
7: zn := zn\{cn} . After all, we apparently do not need cn.
8: else
9: Zo := Zo ∪ {z′′}

10: end if
11: end if

Say that, after running Algorithm 7.3, one has found a subzone zn of zo for
which the stutter step under consideration can be applied, and for which dzn is
the distance function. If dzo has already been assigned, then the stutter step under
consideration is only interesting for those markings ~x for which dzn(~x) < dzo(~x).
This constraint is exactly the one constructed in line 1 of Algorithm 7.4. The zone
zn is then divided into two new zones: the part where the constraint holds remains

7.3 Determining the Distance Function 145

zn, and z′′, for which it does not. If zn is empty, the stutter step under consideration
has been irrelevant, and the list S should not be updated. If only z′′ is empty, then
zn fully replaces zn. However, if both zn and z′′ are non-empty, the two of them are
added to Zo instead of just zn.

For the running example, the distance function dz32
(~x) = 3n−2x0−3x1 had already

been assigned to the zone z32 as depicted in Figure 7.3(c). Assume that the next stutter
step to be considered is the t3-stutter step from z32 to z11. Since the distance function in
z11 is 2n − 1 − x1, and the cost of firing t3 in z32 is zero, the new zones z320 and z321 are
separated by the line 3x2 ≤ n− x1. In the next and final iteration z21 is further divided
into the zones z210 and z211 by possibilitySplit.

Algorithm 7.5 update()

1: θ∗ := (zo, tj , z
θ
0 , t

θ
0, . . . , z

θ
|θ|, t

θ
|θ|) : θ = θzd . so θ∗ is the path form of s

2: D := D ∪ {θ∗} . followed by θzd , see Section 7.5
3: if Xzn 6= ∅ then
4: θzn = θ∗ . see Section 7.5
5: alterS(Zo,zo)
6: S := S ∪ {(z′, ·, zn) ∈ V : z′ 6= zn}
7: C := ∅
8: for all s ∈ V : s = (zn, ti, z

n) do
9: if dzn(0)− dzn(~ui) > κi(z

n) then
10: C := C ∪ {c : c = ¬(~a(~x+ ~ui) ./ b) ∧ ~a~x ./ b ∈ zn}
11: end if
12: end for
13: Zn := {z : (∀c ∈ C : c ∈ z ∨ ¬c ∈ z) ∧ (∀c ∈ zn : c ∈ z) ∧ (∃~x ∈ X : ~x ∈ Xz)}
14: ∀z ∈ Zn : dz := dzn , θz := θ∗

15: alterS(Zn,zn)
16: S := S ∪ {s′ ∈ V : s′ = (z′, ·, z′′), z′ 6= z′′, z′ ∈ Zn, z′′ ∈ Zn}
17: end if

Algorithm 7.6 alterS(Z∗,z∗)
Require: set Z∗, zone z∗

1: if cardinality of Z∗ > 1 then . I.e., if new zones have been created
2: Z := (Z\{z∗}) ∪ Z∗

3: V :=

{
(z′, tj , z

′′) :
∃~x : ~x ∈ Xz′ , ~x+ ~uj ∈ Xz′′
z′, z′′ ∈ Z

}
4: S := S ∪ {(z′′, t, z′) ∈ V : z′′ ∈ Z∗ ∧ (z∗, t, z′) ∈ S}
5: S := S\{v ∈ S : v = (z∗, ·, ·)}
6: S := S ∪ {(z′, t, z′′) ∈ V : z′′ ∈ Z∗ ∧ (z′, t, z∗) ∈ S ∧ (z′, t, z′′) /∈ S}
7: S := S\{v ∈ S : v = (·, ·, z∗)}
8: end if

146 7. DOMINANT PATHS IN STOCHASTIC PETRI NETS

7.3.5 Update the step list (update and alterS)

At the end of each iteration of the main loop, the routine update (i.e., Algorithm 7.5)
is called in order to add new steps to S and to update existing steps in S that may
need to change due to the partitioning of a zone. The routine begins with several
steps that do not have an impact on the zone partitioning but which help illustrate
the proof in Section 7.5: we let θ∗ be the path form considered and update D (more
detail is given in Section 7.5). We then begin the main part of the routine by check-
ing whether Xzn is empty — since zn corresponds to the zone that is constructed
by possibilitySplit and costSplit as the zone for which the stutter step is
both possible and cost-efficient, Xzn is the set of states for which it makes sense to
carry out the considered stutter step. If this set is empty, we do not do anything.
Otherwise, we let the new dominant path form of zn be the considered path form
and call the routine alterS on zo and Zo.

In alterS (i.e, Algorithm 7.6), we first check if the zone given as an argument
has been partitioned. If so, we update the zone graph (Z, V) and reroute steps
already in S that use the partitioned zone such that they use its partitions. In line 6
of update we add to S all the steps that lead to zn. If some distance had previously
been assigned to zn or a bigger zone, then some of the steps added in line 6 of
alterS may have been added previously in line 6 of update . This is the reason
why the implementation of the algorithm does not add duplicates, as implied by
the condition (z′, t, z∗) /∈ S that appears in line 6 of alterS.

One restriction imposed in line 6 of update is that a step s = (zo, tj , z
d) that is

added to S in this line cannot stay in the same zone (i.e., zo 6= zd). The purpose
of lines 7 to 16 is to handle these cases correctly. As we argue in Section 7.5, if it is
optimal to fire a transition and remain within the same zone then it is optimal to fire
this transition as often as possible. Specifically, it is only optimal to fire a transition
within the same zone if the cost of firing the transition is less than the gain in terms
of distance, i.e., if dzn(0) − dzn(~ui) > κi(z

n), which is checked in line 10. If this
condition holds, we add constraints in line 10 of update that indicate whether
it is still possible to fire the relevant transitions or not. The zone zn is then further
partitioned using these constraints, and steps already in S involving zn are updated
in alterS. Finally, the steps between the new zones are added to S in line 16. Note
that we now do not need to consider the steps that remain within the same zone, as
these steps would not fire the relevant transition as often as possible.

7.4 Empirical Results

In this section, we empirically demonstrate the effectiveness of our algorithm. In
Section 7.4.1, we describe the case studies that we will consider. We present nu-
merical results obtained using the algorithm to find d in Section 7.4.2, while in Sec-
tion 7.4.3 we use d to apply simulation.

7.4 Empirical Results 147

7.4.1 Case Description

We use two case studies. The first is the running example from Section 7.2.2, where
the system is assumed to have failed if x2 > n, n ∈ N.

The second is a more realistic multicomponent system with interdependent com-
ponent types, taken from [96]. For the latter we have six component types, with
ni components of type i and (n1, . . . , n6) = (n+ 2, n+ 1, n+ 3, n, n+ 4, n+ 2). In
the benchmark setting, n = 3. If k components of type i have failed, the rate
at which the next component of type i fails is (ni − k)λiε, where (λ1, . . . , λ6) =
(2.5, 1, 5, 3, 1, 5). There is a single repairman who repairs components following a
preemptive priority repair strategy, where components of type i have priority over
components of type j if i < j. The repair rate for type i is always µi, (µ1, . . . , µ6) =
(1, 1.5, 1, 2, 1, 1.5). The system is said to have failed when all components of any
type are down. We estimate the probability that, after the first component failure
(drawn randomly), the system fails before all components are repaired.

7.4.2 Results of the Distance Finding Algorithm

A summary of the results of our algorithm is displayed in Table 7.2. The number of
initial constraints is the main factor that determines the runtime of the algorithm.
For the initial zones, we distinguish between the (a ∪ b)- and ¬(a ∪ b)-zones be-
cause only the latter have an impact on the runtime of the rest of the algorithm. A
few things to mention: the number of zones may depend on n because for small
n some zones will be empty, which are discarded. Also, the final number of zones
may depend on the way stutter steps are chosen from S in the main loop, because
if a zone is split by a stutter step that later turns out to be insignificant, these zones
are not recombined by our implementation, so both the number of zones and the
number of iterations are implementation-dependent. For the multicomponent sys-
tem, one observes that the number of both initial and final zones is much lower
in Table 7.2 than in the comparable table in [93]. The reason in that in [93] the
need for lines 7 to 16 of update was averted by including the creation of ‘margins’
around the initial zones in initZoneGraph. Obviously, the implementation that
includes lines 7 to 16 gives much better performance. This also has a slight impact
on the running example, but the consequences in this setting are nowhere near as
profound as for the multicomponent system.

7.4.3 Simulation Results

The simulation results are summarised in Tables 7.3 and 7.4. In both tables, we
display the results for three simulation methods: standard Monte Carlo (MC), Bal-
anced Failure Biasing (BFB) and IS based on our distance finding algorithm (Zone-
IS). As discussed in Section 1.3.4, BFB means that the total probability of firing a
failure transition is set to 1

2 , uniformly distributed over the individual failure transi-
tions (similarly for the repairs). In our implementation of BFB, we only consider the

148 7. DOMINANT PATHS IN STOCHASTIC PETRI NETS

Running Example Multicomponent System
n 3 10 3 5
initial constraints 5 5 18 18
initial zones 6 6 729 729
initial ¬(a ∪ b)-zones 3 3 63 63
final ¬(a ∪ b)-zones 8 10 1444 1885
iterations in main loop 28 39 12879 27378
markings in X ∞ ∞ 40320 241920
time to construct (sec) 0.45 0.5 46.03 173.96

Table 7.2: Results of the numerical analysis for the running example.

ν-transition t3 to be a repair transition. Next to the simulation results, we display
numerical approximations obtained using the model checking tool PRISM [67].

For the efficiency of the methods we look at the width of the 95%-confidence
intervals (CI) of the estimates. A lower value generally means a better estimate;
however, if a change of measure is poorly suited for the system, IS may suffer from
underestimation [33]. An example of this are the results for BFB for n = 10 and
ε = 0.01 in Table 7.3. For the sake of consistency with [96], we used 200 000 000
runs per MC-estimate and 1 000 000 runs per IS-estimate. In all cases Zone-IS out-
performs BFB, except for n = 5 in Table 7.4. The reason is that BFB needs a clear
distinction between failures and repairs to work well.

n ε π̂ 95%-CI-bounds N π (PRISM)

3

10−1
MC 1.09·10−4 ± 0.01400·10−4 200 000 000

1.100·10−4BFB 1.088·10−4 ± 0.015·10−4 1 000 000
Zone-IS 1.099·10−4 ± 0.001·10−4 1 000 000

10−2
MC 5.0·10−9 ± 9.8·10−9 200 000 000

1.010·10−8BFB 9.959·10−9 ± 0.209·10−9 1 000 000
Zone-IS 1.01016·10−8 ± 0.00004·10−8 1 000 000

5

10−1
MC 1.0·10−8 ± 1.386·10−8 200 000 000

1.100·10−8BFB 1.099·10−8 ± 0.084·10−8 1 000 000
Zone-IS 1.100·10−8 ± 0.003·10−8 1 000 000

10−2
MC — — 200 000 000

1.010·10−16BFB 9.036·10−17 ± 1.529·10−17 1 000 000
Zone-IS 1.0100·10−16 ± 0.0002·10−16 1 000 000

10

10−1
MC — — 200 000 000

1.100·10−18BFB 1.018·10−18 ± 1.715·10−18 1 000 000
Zone-IS 1.111·10−18 ± 0.021·10−18 1 000 000

10−2
MC — — 200 000 000

1.010·10−36BFB 8.791·10−38 ± 17.231·10−38 1 000 000
Zone-IS 1.007·10−36 ± 0.002·10−36 1 000 000

Table 7.3: Results of the simulation analysis for the running example.

7.5 Proof of Correctness 149

n ε π̂ 95%-CI-bounds N

3

10−3
MC 7.15·10−7 ± 1.17·10−7 200 000 000
BFB 7.406·10−7 ± 0.285·10−7 1 000 000

Zone-IS 7.282·10−7 ± 0.131·10−7 1 000 000

10−4
MC — — 200 000 000
BFB 4.860·10−9 ± 0.265·10−9 1 000 000

Zone-IS 4.878·10−9 ± 0.016·10−9 1 000 000

5

10−3
MC — — 200 000 000
BFB 1.329·10−10 ± 0.335·10−10 1 000 000

Zone-IS 8.880·10−11 ± 0.953·10−11 1 000 000

10−4
MC — — 200 000 000
BFB 1.532·10−15 ± 0.790·10−15 1 000 000

Zone-IS 1.994·10−15 ± 0.044·10−15 1 000 000

Table 7.4: Results of the simulation analysis for the multicomponent system.

7.5 Proof of Correctness

In this section, we prove that when the algorithm described in this chapter termi-
nates, for each state ~x ∈ X it holds that d(~x) satisfies the definition given in (5.2) —
i.e., d(~x) represents the smallest ε-distance from ~x to the goal set. Before we con-
tinue with the proofs, we give more detail about the operation of our algorithm.
The main goal of the algorithm is to group states together such that for each state
~x in the same zone the most likely path from ~x to the goal set has the same path
form. As said in the introduction to Section 7.3, path forms are a way of character-
ising groups of paths through the zone graph, where the zone graph is the graph
consisting of the relevant zones in the system and the connecting stutter steps. A
complication is that the zone graph is constantly updated; while we run the algo-
rithm zones may be subdivided into other zones. Hence, we need a notion of path
forms that is more consistent throughout the running of the algorithm.

LetZ be the set of all zones, i.e., the set of all sets of constraints (note that this set
is much larger than the set of all zones in the zone graph during a specific iteration
of the algorithm). Formally, let a path form θ be given by (zθ0 , t

θ
0, z

θ
1 , . . . , t

θ
|θ|−1, z

θ
|θ|)

where ∀i : zθi ∈ Z and tθi ∈ T . A path ω given by (xω0 , x
ω
1 , . . . , x

ω
|ω|) which is the

result of firing the sequence of transitions (tω1 , . . . , t
ω
|ω|) is said to correspond to a path

form θ iff xω0 ∈ Xzθ0 and

∃n0, . . . , n|θ| s.t.

∀i, j = 1, . . . , |θ| − 1 : ni ∈ {1, . . . , |ω| − 1} and ni < nj ,
∀i = 1, . . . , |θ| : ∀n = ni−1, . . . , ni − 1 : xωn ∈ Xzθi−1

and tωn = tθi−1,

n0 = 0, n|θ| = |ω| and xω|ω| ∈ Xzθ|θ| .

The most trivial path forms are those with |θ| = 0; these paths consist only of a
single zone and no stutter steps.

150 7. DOMINANT PATHS IN STOCHASTIC PETRI NETS

While running the algorithm, we are principally interested in assigning to each
relevant zone z its distance function dz . However, these distance functions are the
same linear functions for all states in a zone because for all states in a zone the
shortest paths to the goal set have the same path form. To illustrate the proof given
in this section, we also keep track of the path forms to which the shortest paths
correspond in the algorithm: θz is the path form for the dominant paths in zone z.

During initialisation, we assign to the zones that consist only of goal (i.e., b-)
states (which exist because we use the constraints that define the b-states for the
initial partitioning in initZoneGraph), the trivial path forms consisting only of
these zones and no stutter steps. In subsequent iterations of the main loop path
forms are added to other zones in line 4 of update; the added path form is the
one constructed in line 1 of the same routine. These subsequent path forms are
constructed iteratively by prefixing for each considered step s its source zo and
transition tj to the path form θzd that was previously assigned to the destination zd

of s; this is done in line 1 of update. Since each path form is simply an extension
of a previously considered path form, the path forms leading to the goal zones
can be seen as having a tree-like structure as depicted in Figure 7.4. In Figure 7.4,
each node is a zone and each edge connecting the zones is labelled with a single
transition. Each zone consisting only of b-states is the root of a different tree. Zone
z is a child of zone z′ in the tree via an edge labelled with transition t if there exists
a state in z such that if we repeatedly fire the transition t we reach a state in z′. In
each iteration of the algorithm one of the nodes in the tree is considered, and if a
node is considered then all its ancestor nodes have been considered before it. A tree
represents the same behaviour as the zone graph, albeit in a form that more closely
resembles the way the algorithm operates.

To keep track of which path forms have been considered, we use the setDwhich
is initialised in line 10 of initZoneGraph. Every time the main loop is concluded
we add the considered path form to D in line 2 of update. The set D is updated
after each iteration of the main loop, but we refer to the set that corresponds to
D after the ith iteration as Di. We note here that path forms may be added to D
that contain zones that are partitioned in later stages of the algorithm, i.e., D may
contain paths that contain zones that are no longer in the zone graph. This is not
a problem; if a dominant path exist of a form that contains a zone z that is later
partitioned, then in the zone graph with z having been partitioned there must be a
path form corresponding to this dominant path. To see this, note that when a zone
z is partitioned we add all possible stutter steps between the new zones to the zone
graph in line 3 of alterS. Since the new zones form a partition of z, each path
going through z consists of a series of states and transitions that must run through
the new zones, and since the stutter steps leading this path from one new zone to
another must be in the zone graph there must a full path form in the new zone
graph corresponding to the dominant path.

The first important property underpinning the algorithm is the invariant of
Proposition 1 which says that during each iteration of the algorithm the function
d assigned to each state in X is the lowest among all distances corresponding to

7.5 Proof of Correctness 151

path forms added to D so far. Having proved this invariant, we then know that
if we search each node in each tree (remember that we have a tree for each zone
consisting of b-markings), we will have found the optimal solution for each state
X . Unfortunately, in realistic models the number of nodes in the trees is typically
infinite. As a remedy, the algorithm has several built-in conditions that say that
for certain nodes we can ignore the entire subtree rooted in the node. This will be
the subject of Proposition 2: proving that the nodes in these subtrees indeed cannot
correspond to dominant paths. With Proposition 1 and 2 combined, we know that
when the algorithm terminates the functions d returned indeed correspond to the
dominant paths.

zbi

z1i z2i

z5iz4iz3i z7iz6i

t1i t2i

t3i
t4i

t5i
t6i

t7i

Figure 7.4: Representation as a tree of the path forms leading to a zone zbi of b-markings.

Proposition 1. The algorithm satisfies the following invariant: if, after step i of the algo-
rithm, cost di(~x) has been assigned to state ~x ∈ X , then

1) there exists a path from ~x to some state in Xb with cost di(~x), and

2) there does not exist a path from ~x to some state in Xb of a form in Di that has cost
lower than di(~x).

Proof. This is proved using induction on i.
Initialisation (i = 0):
For all b-states we have cost 0 and for all others cost ∞. This means that 1)

holds because the empty paths (which consist of no stutter steps) give these results.
Furthermore, 2) holds because no other path forms have been considered than the
empty paths.

Induction
Assume that the invariant holds after step i− 1. At step i, we consider a unique

path form ωi, given by

zo
tj−→ zd −→ . . . −→ zωi|ωi|.

Consider the first stutter step. In a path with path form ωi, this means that we are
in a state ~x ∈ Xzo and through firing tj a total number of y(~x) times end up in state
~x′ ∈ Xzd . From ~x′, the rest of the path is so far optimal by the induction hypothesis.

152 7. DOMINANT PATHS IN STOCHASTIC PETRI NETS

1) If di−1(~x) = di(~x), 1) is evident. If di−1(~x) 6= di(~x), then by Algorithm 7.3
we know that the stutter step must be possible (or else ~x would not satisfy the
requirement imposed on zn in Line 7), so 1) also holds here.

2) First, if di(~x) 6= di−1(~x) it must hold that that di(~x) < di−1(~x), because of the
constraint imposed on zn in Line 1 of Algorithm 7.4. So di(~x) ≤ di−1(~x), which (in
combination with the induction hypothesis) means that 2) is only false if there exists
a path of the form ωi that gives cost lower than di(~x). This would mean that there
exists a function y′(~x) 6= y(~x) that results in a path with lower cost. Firing it less
than y times cannot lead from ~x to Xzd due to the definition of y(~x) as the smallest
number of times needed to cross from zo into zd. Firing t more than y(~x) times
would violate the definition of the path form as this mean that the transition is also
fired in a different zone. Also, we can assume that zo 6= zd as this is a condition
imposed in both line 6 and 16 of update. Hence, 2) always holds.

Proposition 2. If a path is dominant then it corresponds to a path form that is in the final
version of D, or there exists a path with a path form in the final version of D with the same
cost.

Proof. We first consider which path forms are never added to D. In each step of the
algorithm we consider a step (zo, tj , z

d) from S where we call zo the source zone
and zd the destination zone. For a path not to be in D one of its steps must not have
been considered, and for that step not to have been considered it mush never have
been added to S. Hence, we will focus on which steps are never added to S.

Steps are added to S in line 6 and in line 16 of update, and in alterS. The
purpose of alterS is to alter steps in S that involve a zone that is to be partitioned
such that these steps use the new zones. Accordingly, one easily checks that for
a step to be added to S in alterS, a step must already exist in S that has the
partitioned zone as a source or destination. Hence, we only consider the steps that
are added to S in line 6 or in line 16 of update.

First, we consider those steps added to S in line 6. Assume that s = (zo, tj , z
d)

has just been considered, this means that Xzo has been partitioned into (Xz)z∈Zo
where it may be that Zo = {zo}. The most interesting element of Zo is the zone
zn. All those s′ = (z′, tk, z

′′) are added to S for which z′′ = zn. Steps with/to
z′′ ∈ Zo\{zn} are never added to S. We know that zn equals zo with the addi-
tional constraints imposed in lines 3 and 4 of possibilitySplit and line 1 of
costSplit. Furthermore, we do not add (z′, tk, z

′′) to S if z′ = z′′ (this case is han-
dled in lines 7 to 16) or if there does not exist a path that corresponds to (z′, tk, z

′′)
because otherwise this step would not have been added to V in alterS.

Hence, there are four possibilities why a step s′ = (z′, tk, z
′′) is not added to S

in line 6:

1. there is no path of the form s′,

2. z′′ does not satisfy the constraints of lines 3 and 4 of possibilitySplit,

3. z′′ does not satisfy the constraint of line 1 of costSplit or

7.6 Conclusions and Discussion 153

4. z′ = z′′ = zn.

If Condition 1 holds then Proposition 2 obviously holds for paths containing s′

because if there are no paths of the form s′ then there are also no dominant paths
containing this step. Condition 2 is similar, in lines 3 and 4 of possibilitySplit
we impose that firing tj (the transition of the previously considered step s) a num-
ber of y times results in a transition from z′′ to zd; if this is not the case, then
the path is not of a form that contains s. Hence, there exist no paths of the form
(z′, tk, z

′′, tj , z
d), and hence no dominant path can have a subpath of this form.

If Condition 3 holds, then there already is a path of another path form whose
steps have been considered and which gives cost equal to or lower than the paths
that correspond to a form beginning with s. Hence, s′ need not be considered.

If Condition 4 holds, then there exists a path with transitions tk being fired
‘within’ zn. Remember that cost function dzn has been assigned to zn in line 8
of possibiliySplit, and that this distance corresponds to the path form θzn .
Hence, in a path corresponding to a path form that meets Condition 4 there exists a
subpath that begins in a state ~x ∈ Xzn and after y firings of tk ends in another state
~x′ ∈ Xzn , after which a path of the form θzn is taken to the goal set. The path form
dzn is also possible from ~x, and this path meets Conditions 4, so the dominant path
involving a number of firings of tk must be better than the path of this form for the
proposition not to hold. The cost of y firings of tk is yκk(zn) and the difference be-
tween the linear distance function evaluations in the two states is dzn(~x)− dzn(~x′).
If this is indeed the case, it holds that it is optimal to fire tk as often as possible —
i.e., until firing tj would lead to a state outside zn. Writing dzn(~v) = ~α~v+β we must
have that

yκk(zn) < dzn(~x)− dzn(~x′) = dzn(~x)− dzn(~x+ y~uk)

= ~α~v + β − ~α(~v + y~uk) + β = −y~α~uk

so that in the non-trivial case y > 0 it must hold that

κk(zn) < −~α~uk = dzn(0)− dzn(~ui)

since dzn(0) = β. If this is the case, the if-statement in line 9 will evaluate to true,
meaning that due to line 10 zn will be partitioned under a constraint that separates
the part where tk can be fired without leaving zn and the part where it cannot.
Hence, although a path form satisfying 4 will never be added to S in line 6, but a
path that fires tk as much as possible within zn will be added to S in line 16 and
since this is the only way firing tk within zn can be dominant, the proposition holds.

7.6 Conclusions and Discussion

We have presented a novel method to automatically construct a change of measure
for speeding up the simulation of rare events in stochastic Petri nets. Our approach

154 7. DOMINANT PATHS IN STOCHASTIC PETRI NETS

uniquely combines two characteristics: it uses a high-level description of the model
with much flexibility and expressivity (a stochastic Petri net) and it works without
generating the entire state-space.

The heart of our method is an algorithm which automatically partitions the state
space into a collection of zones. Each zone comprises states in which the shortest
paths to the goal set (which can be used to apply ZVA) have a similar form. The
zones are demarcated by a set of linear inequalities, thus avoiding enumeration of
all states. The number of zones in typical models does not need to increase as the
model’s size increases.

We have demonstrated that our algorithm works well in two examples. Fur-
thermore, we have proven that when the algorithm terminates, the returned dis-
tances of the shortest paths to the goal set are correct. More experimentation will
be needed to fully understand its possibilities and limitations and to optimise the
implementation, and some extensions of the algorithm are needed to handle certain
classes of models. Specifically, three issues remain unresolved. The first is termina-
tion of the algorithm within finite time. The second is the integrity of the number of
steps in a stutter step. The third is the efficiency of the resulting importance sampling
estimator. For each we give a short discussion.

7.6.1 Termination

If the state space is infinite, it is possible that the (current) algorithm will not ter-
minate. For example, if transition t1 takes the system closer to the goal states and
enables a transition t2 with a very high firing rate, but firing t2 disables itself and
does not negate the firing of t1, then a shortest path might alternate between firing
t1 and t2. This may result in the algorithm constructing an infinite number of zones.
A possible solution is to broaden the concept of a stutter step. If a shortest path al-
ternates between a tuple of transitions, the repeated firing of this tuple could be
seen as a stutter step in itself, and the sum of the incidence vectors of the individual
transitions as the net effect on the marking. Under such a restriction, the space of
zones could well be bounded.

7.6.2 Integrality

In line 2 of possibilitySplit the function findNumberOfTransitions is
called, which determines for a step s = (z, ti, z

′) the number of firings of ti needed
to go from a state in Xz to a state in Xz′ . Depending on (1) the shape of the linear
inequality separating z and z′, and (2) the incidence vector ~ui, it may happen that y
is not necessarily integer-valued for all states in Xz . E.g., in an SPN with two places
it may happen for a specific stutter step that findNumberOfTransitions returns
2y = x0 + x1, which is fractional if x0 + x1 is odd. This can be detected when run-
ning the algorithm and a naive implementation would simply stop the algorithm
without giving an answer. However, a possible solution is to generalise the concept
of a zone, allowing constraints involving the modulo-operator. Checking whether

7.6 Conclusions and Discussion 155

such zones are empty is then no longer an ILP-problem, but can still be solved using
branch-and-bound, the most common way of solving ILP-problems.

7.6.3 Importance Sampling Efficiency
The importance sampling measure as defined in (7.2) is inspired by the change of
measure proposed in [73], where also the notion of bounded relative error comes up.
This notion says that as ε approaches 0, the ratio of the standard deviation of the
estimator to the standard mean remains bounded. This is desirable: since the ac-
curacy of a simulation result is directly linked to this relative error, this means that
the time to reach some level of accuracy never crosses a certain threshold value as ε
becomes smaller.

The authors of [73] show that bounded relative error is guaranteed in their set-
ting under the assumption that the state space is finite and that no high-probability
cycles exist. Essentially, these assumptions imply that the number of paths ω with
P(ω) = Θ(εd(~x)) is finite. If this does not hold, it may be that P(Ψ~x) 6= Θ(εd(~x)).

A possible remedy would then be to perform a loop-detection algorithm on the
initial graph returned by Algorithm 7.2 in order to detect the high-probability cy-
cles, and remove them.

156 7. DOMINANT PATHS IN STOCHASTIC PETRI NETS

CHAPTER 8

Conclusions

In this thesis, we have presented several contributions to the fields of stochastic
model checking using simulation. Before we move on to a more detailed discussion,
we would like to present a high-level overview of the main contributions.

1. We added to the understanding of hypothesis testing methods for statistical
model checking. This is particularly relevant because statistical model check-
ing techniques have considerably gained in term of popularity recently, caus-
ing the need for clarity to increase.

2. We automated the application of rare event simulation techniques for the broad,
commonly used modelling class of Markov chains. This is noteworthy be-
cause a lack of generality is an issue that troubles many rare event simulation
methods.

3. We avoided the curse of dimensionality by not needing the full construction of
the state space for rare event simulation of stochastic Petri net models. This
is interesting because it strikes a good balance between standard Monte Carlo
techniques that are unable to exploit information of the model on one hand
and numerical techniques that suffer from the state space explosion problem
on the other hand.

The outline of the rest of this chapter is as follows. In Section 8.1, we discuss the
contributions of this thesis to the field of stochastic model checking using simula-
tion in more detail, while we discuss possibilities for future research in Section 8.2.

8.1 Contributions

We discuss the contributions of each chapter separately.
In Chapter 2, we have presented a common framework for comparing testing

techniques. Furthermore, we have presented a new test and have discussed how
to use this test as a sequential test for evaluating steady-state properties. We have
presented an extensive case study involving six tests for statistical model checking,
four that are currently implemented in model checking tools, a test from the statis-
tical literature that was not previously used in the field of statistical model checking
and our new test.

158 8. CONCLUSIONS

In Chapter 3, we have discussed different asymptotic regimes in the context of
birth-death processes, and their influence on the so-called ‘dominant paths’ (which
are used to determine our change of measure). We have given an overview of com-
monly found regimes and events, and have discussed their impact on the applica-
tion of importance sampling. Also, we have proposed a new method for efficiently
drawing sojourn times in the regime of large mission times, and demonstrated em-
pirically that our method works well.

In Chapter 4, we have studied networks of parallel birth-death processes, where
we specifically focused on the Distributed Database System, a well-known case
study from the literature that falls into this model category. We have presented a
method based on regeneration cycles that performs well even in the regime of fast
component repairs. We have generalised this approach to multicomponent systems
with the advanced repair strategies of deferred repair and shared repair facilities.
We have broadened the concept of a busy cycle, and showed that in the relevant
asymptotic our previous analysis still holds.

In Chapter 5, we have presented an algorithm for rare event simulation of Mar-
kov chains. We focus on the estimation of the probability that some rare state in
the Markov chain is visited before some more typical state. The aforementioned
algorithm is completely automated and works for a very broad model class. The al-
gorithm produces a change of measure that we proved to have the desirable prop-
erty of Vanishing Relative Error. The algorithm removes high probability cycles,
an obstacle that frequently appears in the literature. We have also generalised this
approach to estimate time-bounded versions of this probability in CTMCs. While
the method proposed so far makes a vital technical assumption about the system
model, we have confidence that this can be overcome in future research.

In Chapter 6, we have proposed two new methods that use the information
produced by the algorithm and which may lead to variance reduction in addition
to the variance reduction achieved by the use of an importance sampling change
of measure. These techniques work well if paths in which the rare event occurs
through a non-dominant path still appear frequently enough. We have included a
detailed case study discussing the performance of these techniques combined with
two different common importance sampling measures.

In Chapter 7, we have introduced a method to automatically perform rare event
simulation in the modelling class of stochastic Petri nets, without generating the
entire state space. The main principle that underpins the method is the construc-
tion of a so-called zone graph, which is an abstraction of the state space in which
each zone corresponds to a set of states of which the paths to the rare set have the
same basic form. We have empirically demonstrated the good performance of the
method, and proved its correctness.

8.2 Future Work

We have divided the contents of this section into three parts. The first concerns
future work in the field of hypothesis testing, found in Section 8.2.1. The second

8.2 Future Work 159

concerns future work in the field of rare event simulation, found in Section 8.2.2.
The third concerns the combination of the two previous subjects, and is found in
Section 8.2.3.

8.2.1 Hypothesis Testing

Hypothesis testing is the subject of Chapter 2. In general, the class of system models
is extremely broad for statistical model checking using hypothesis testing. As men-
tioned in Section 2.1.1, there are several assumptions, namely: paths being sam-
pled according to a well-defined probability measure, in a finite amount of time
(with probability 1) and without encountering non-deterministic choice (as, e.g., in
Markov decision processes). Of these three conditions, termination within a finite
amount of time is the hardest for the user to check. However, if one restricts the
model class to a more restricted setting like stochastic Petri nets, it may be possible
to apply a zone-based algorithm similar to the one proposed in Chapter 7. Such an
algorithm would work at the level of the model description and would identify re-
gions where the system can get ‘stuck’ (i.e., bottom strongly connected components)
or infinite-sized regions in which there is a ‘drift’ away from the termination states.

Furthermore, each test used to apply statistical model checking depends on
user-specified parameters which, depending on the choice of test, can have an im-
pact on any of a test’s three main performance criteria: the correctness, the power
and the efficiency. These parameters are all related to how far the true probability
of interest is away from the boundary value, and perform badly when this distance
is different from the one given by the user. With the two tests discussed in Sec-
tion 2.3, the user can at least be sure that only the efficiency is affected. Still, a fully
automated approach would not even require this parameter. Of course, due to its
generality, such a fully automated approach would do worse than the most general
test so far — namely Darling — when its input parameter γ is chosen just right. This
is a trade-off that may be an argument against such a fully generalised approach,
since the Darling test is already much less efficient than, e.g., the SPRT, when the
parameters are chosen correctly.

To verify steady-state properties using statistical model checking, a large amount
of user input is still needed. A major complication occurs when the state space of
the model contains a region in which a lot of time is spent in steady-state but which
is not visited during 1) a typical renewal cycle or 2) during the ‘warm-up’ phase of
the simulation. In the first case, a fixed-sample size test using the regenerative ap-
proach as in [117] will fail unless the sample size is large enough. In the second case,
the sequential test of Section 2.5 that uses batch means will fail unless the batch size
is large enough. In both cases, it is left to the user to choose either of these param-
eters correctly. Again, a possible remedy is to restrict the model class to stochastic
Petri nets and to apply an algorithm similar to the one proposed in Chapter 7 to
identify these complicated regions (if this is feasbile).

160 8. CONCLUSIONS

8.2.2 Automated Rare Event Simulation

The classical challenge of rare event simulation (and importance sampling in par-
ticular) has long been its generality: approaches that work well in a restricted set-
ting tend to fail when the setting is slightly generalised. Even the identification
of rarity regimes, and, by implication, the general behaviour of the set of domi-
nant paths eludes complete generality: the rarity regimes discussed in Chapter 3
are particularly relevant in a specific model class (the birth-death process) and spe-
cific properties (i.e., the ‘unbounded until’ property ψ and the ‘bounded until’ prop-
erty ψτ̄). Typically, it makes sense to divide rarity regimes into ‘static’ regimes, in
which there is a fixed set of dominant paths that come to dominate the event of
interest, and ‘dynamic’ regimes, in which this sets changes as the parameters un-
derlying the regime approach their asymptotes. Still, even between the two ‘static’
regimes of Section 3.2.1 (‘slow component failures’, λ ↓ 0) and of Section 3.2.2 (‘fast
component repairs’, µ → ∞) there is variety in terms of which importance sampling
approach works well, although the approach proposed in Chapter 4 works for both
of these settings. It would be interesting to see if a general notion of rarity regimes
can be given not in terms of parameters in a specific model setting but purely in
terms of the behaviour of the set of the dominant paths, which still has the power
to describe the structure of a well-performing change of measure.

Despite the fact that the approach of Chapter 4 works well for several rarity
regimes, it is still plagued by importance sampling’s classical challenge (i.e., a lack
of generality). It works well in its setting (i.e., networks of parallel birth-death
processes) but when the setting is slightly generalised it is uncertain whether the
approach continues to do so. When we broadened the repair strategy to shared re-
pair facilities in Section 4.3 we did not notice a decrease in performance. However,
the effects would be unclear if we added failure propagation (i.e., components of
several types failing at the same time) to the model. While the technique may not
be general enough to be implemented in common model checking/performance
evaluation tools such as PRISM, the insights gained in Chapter 4 can be applied
to other settings. Furthermore, the model class, while restricted, is still a relevant
model for mass data storage systems and the technique of Chapter 4 can be used to
evaluate their performance.

The approach of Chapter 5 is general enough to be called model checking: it can
handle ‘unbounded until’ type properties (reaching a rare set before a more typical
set) in any Markov chain and ‘bounded until’ type properties for CTMCs (reaching
a rare set before a more typical set and within a fixed time frame) as long as the
time interval is of the form [0, t], t ∈ R+. Since evaluation of the next-operator us-
ing statistical model checking is largely trivial, only bounded until for DTMCs (i.e.,
reaching a rare set before a more typical set and before a within a fixed frame of
step numbers) and steady-state properties are left as a challenge before the algo-
rithm can handle the full breadth of PCTL- and CSL-model checking (apart from
nested operators). For steady-state properties, we can use an approach based on
renewal theory similar to the one described in Chapter 4. If the regeneration state
is contained in a high-probability cycle, then we may use generalised busy cycles

8.2 Future Work 161

as discussed in Section 4.2. Also, we can use the results of Chapter 4 to generalise
the approach of Chapter 5 to settings with large time horizons (i.e., where the time
horizon is inversely proportional to the rarity parameter ε): this would yield a time-
dependent change of measure for estimating ‘bounded until’ type properties.

The technique based on formula (6.6) in Chapter 6 is useful to supplement the
technique of Chapter 5. Although the resulting estimate only works well if non-
dominant paths satisfying the event of interest are sampled often enough, an impor-
tant quality is that if this turns out not to be the case after having drawn a sample,
we can still use this sample to obtain the standard estimate. To make the technique
more broadly applicable (i.e., not just as a supplement to the method of Chapter 5),
one could look at ways in which the probability contribution of certain (not neces-
sarily all) dominant paths can easily be computed, possibly using high-level analy-
sis as in Chapter 7, and then use this information to achieve variance reduction.

The zone-based approach of Chapter 7 still has several issues (as discussed in
Section 7.6) that either need to be resolved in future research or which require user
insight to detect. Apart from these issues, obvious extensions include a generalisa-
tion to transient properties (based on the insights of Section 5.5), a dedicated ILP-
solver (since the very general one used for our implementation is very slow consid-
ering that our problems have a common structure) and an extension to other rarity
regimes. An obvious rarity regime is the one of Section 3.2.3 (many spares, n→∞).
This regime is interesting for several reasons: 1) it includes many biochemical mod-
els that are increasingly analysed using model checking tools, 2) the state space
explosion problem has particularly profound consequences in this regime, and 3)
it is not necessary to use an ILP-solver in this setting because one can assume that
each zone is non-empty simply because there are so many states. As for the change
of measure in this setting, one could think of an approach in which different ‘drifts’
are assigned to each of the zones, combined with a ‘mollification’ (as in [35]) that is
particularly relevant on the boundaries between the zones.

8.2.3 Combining Hypothesis Testing and Rare Event Simulation
Last but not least, there is the unresolved question of how to combine hypothesis
testing and importance sampling, as discussed in Section 2.6.1. An interesting ques-
tion is whether one could use the algorithm of Chapter 5 to construct a change of
measure in which the likelihood ratios are bounded from above. When the like-
lihood ratios are upper bounded, we can use the Chernoff-Hoefding inequality to
construct confidence intervals or to apply a fixed sample size test, and we can ap-
ply the Azuma test for sequential hypothesis testing. A way to achieve bounded
likelihood ratios could be to ‘turn off ’ the importance sampling when, during the
simulation, the likelihood ratio reaches a certain level, the same way we now turn
off the importance sampling when we leave Λ, the set of relevant states. It remains
to be seen whether we retain important properties such as BRE and VRE in this
setting. As mentioned in Section 2.6.1, this idea has not been fully explored, hence,
remains a subject for further research.

162 8. CONCLUSIONS

Bibliography

[1] E. Ábrahám, N. Jansen, R. Wimmer, J. P. Katoen, and B. Becker. DTMC model checking
by SCC reduction. In Proceedings of the Seventh International Conference on the Quantita-
tive Evaluation of Systems (QEST), pages 37–46. IEEE, 2010.

[2] M. Ajmone Marsan, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte. Modelling
with generalized stochastic Petri nets. John Wiley & Sons, 1994.

[3] S. Amari and R. Misra. Closed-form expressions for distribution of sum of exponential
random variables. IEEE Transactions on Reliability, 46(4):519–522, 1997.

[4] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous-time Mar-
kov chains. ACM Transactions on Computational Logic (TOCL), 1(1):162–170, 2000.

[5] C. Baier, L. Cloth, B. R. Haverkort, H. Hermanns, and J. P. Katoen. Performability
assessment by model checking of Markov reward models. Formal Methods in System
Design, 36(1):1–36, 2010.

[6] C. Baier, P. D’Argenio, and M. Groesser. Partial order reduction for probabilistic
branching time. Electronic Notes in Theoretical Computer Science, 2006.

[7] C. Baier, B. R. Haverkort, H. Hermanns, and J. P. Katoen. Model checking continuous-
time Markov chains by transient analysis. In Computer Aided Verification, volume 1855,
pages 358–372. LNCS Volume 1855, Springer, 2000.

[8] C. Baier, B. R. Haverkort, H. Hermanns, and J. P. Katoen. On the logical character-
isation of performability properties. In Automata, Languages and Programming, pages
780–792. LNCS Volume 1853, Springer, 2000.

[9] C. Baier, B. R. Haverkort, H. Hermanns, and J. P. Katoen. Model-checking algo-
rithms for continuous-time Markov chains. IEEE Transactions on Software Engineering,
29(6):524–541, 2003.

[10] C. Baier and J. P. Katoen. Principles of model checking. MIT press, 2008.

[11] B. Barbot, S. Haddad, and C. Picaronny. Coupling and importance sampling for statis-
tical model checking. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 331–346. LNCS Volume 7214, Springer, 2012.

[12] J. Barnat, J. Chaloupka, and J. van de Pol. Distributed algorithms for SCC decomposi-
tion. Journal of Logic and Computation, 21(1):23–44, 2011.

[13] S. Blom and J. van de Pol. State space reduction by proving confluence. In Computer
Aided Verification, pages 596–609. LNCS Volume 2404, Springer, 2002.

[14] A. Blum, A. Goyal, P. Heidelberger, S. Lavenberg, M. Nakayama, and P. Shahabud-
din. Modeling and analysis of system dependability using the system availability es-
timator. In Twenty-Fourth International Symposium on Fault-Tolerant Computing, pages
137–141. IEEE, 1994.

164 BIBLIOGRAPHY

[15] A. Bobbio and K. S. Trivedi. An aggregation technique for the transient analysis of stiff
Markov chains. IEEE Transactions on Computers, 100(9):803–814, 1986.

[16] H. Boudali, P. Crouzen, B. R. Haverkort, M. Kuntz, and M. Stoelinga. Arcade - A
formal, extensible, model-based dependability evaluation framework. In 13th IEEE
International Conference on Engineering of Complex Computer Systems, Belfast, volume 3,
pages 243–248. IEEE Press, 2008.

[17] M. Capiński and P. E. Kopp. Measure, integral and probability. Springer, 2004.

[18] J. Carrasco. Failure distance based simulation of repairable fault-tolerant systems. In
Proceedings of the 5th International Conference on Modeling Techniques and Tools for Com-
puter Performance Evaluation, pages 351–365, 1992.

[19] N. Chomsky. Three models for the description of language. IRE Transactions on Infor-
mation Theory, 2(3):113–124, 1956.

[20] E. Chong and S. Żak. An Introduction to Optimization. John Wiley & Sons, 2004.

[21] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. Doyle, W. Sanders, and
P. Webster. The Möbius modeling tool. In Proceedings of the 9th International Workshop
on Petri Nets and Performance Models. IEEE, 2001.

[22] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 8(2):244–263, 1986.

[23] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the state explosion
problem in model checking. In Informatics: 10 Years Back, 10 Years Ahead, pages 176–
194. LNCS Volume 2000, Springer, 2001.

[24] E. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction using partial
order techniques. International Journal on Software Tools for Technology Transfer, 2(3):279–
287, 1999.

[25] E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

[26] L. Cloth and B. R. Haverkort. Five performability algorithms: A comparison. In
MAM 2006: Markov Anniversary Meeting, Charleston, SC, USA, pages 39–54, Raleigh,
NC, USA, June 2006. Boson Books.

[27] D. Darling and H. Robbins. Iterated logarithm inequalities. Proceedings of the National
Academy of Sciences of the United States of America, 57(5):1188–1192, 1967.

[28] D. Darling and H. Robbins. Some nonparametric sequential tests with power one.
Proceedings of the National Academy of Sciences of the United States of America, 61(3):804–
809, 1968.

[29] A. David, K. Larsen, A. Legay, M. Mikučionis, D. Poulsen, J. Van Vliet, and Z. Wang.
Statistical model checking for networks of priced timed automata. In Proceedings of
FORMATS 2011, pages 80–96. LNCS Volume 6919, Springer, 2011.

[30] P. T. de Boer. Analysis and efficient simulation of queueing models of telecommunication
systems. PhD thesis, University of Twente, 2000.

[31] P. T. de Boer, P. L’Ecuyer, G. Rubino, and B. Tuffin. Estimating the probability of a rare
event over a finite time horizon. In Proceedings of the 2007 Winter Simulation Conference,
pages 403–411. IEEE Press, 2007.

BIBLIOGRAPHY 165

[32] S. Derisavi, H. Hermanns, and W. Sanders. Optimal state-space lumping in Markov
chains. Information Processing Letters, 87(6):309–315, 2003.

[33] M. Devetsikiotis and J. Townsend. An algorithmic approach to the optimization of
importance sampling parameters in digital communication system simulation. IEEE
Transactions on Communications, 41(10):1464–1473, 1993.

[34] E. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

[35] P. Dupuis, A. D. Sezer, and H. Wang. Dynamic importance sampling for queueing
networks. The Annals of Applied Probability, pages 1306–1346, 2007.

[36] D. El Rabih, G. Gorgo, N. Pekergin, and J.-M. Vincent. Steady-state property verifi-
cation: a comparison study. In Proceedings of the Fourth international conference on Ver-
ification and Evaluation of Computer and Communication Systems, pages 95–106. British
Computer Society, 2010.

[37] D. El Rabih and N. Pekergin. Statistical model checking using perfect simulation. In
Automated Technology for Verification and Analysis, pages 120–134. LNCS Volume 5799,
Springer, 2009.

[38] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture analysis & design language
(AADL): An introduction. Technical report, Carnegie Mellon University, 2006.

[39] R. M. Feldman and C. Valdez-Flores. Applied probability and stochastic processes.
Springer, 2010.

[40] G. Fishman. Discrete-event simulation: modeling, programming, and analysis. Springer,
2001.

[41] B. Fox and P. Glynn. Discrete-time conversion for simulating finite-horizon Markov
processes. SIAM Journal on Applied Mathematics, pages 1457–1473, 1990.

[42] P. Glynn. A GSMP formalism for discrete event systems. Proceedings of the IEEE,
77(1):14–23, 1989.

[43] A. Goyal, W. Carter, E. de Souza e Silva, S. Lavenberg, and K. Trivedi. The system
availability estimator. In Proceedings of the 16th Int. Symp. on Fault-Tolerant Computing,
pages 84–89, 1986.

[44] A. Goyal, S. Lavenberg, and K. Trivedi. Probabilistic modeling of computer system
availability. Annals of Operations Research, 8(1):285–306, 1987.

[45] A. Goyal, P. Shahabuddin, P. Heidelberger, V. Nicola, and P. Glynn. A unified frame-
work for simulating Markovian models of highly dependable systems. IEEE Transac-
tions on Computers, 41(1):36–51, 1992.

[46] D. Gross, J. Shortle, J. Thompson, and C. Harris. Fundamentals of queueing theory. John
Wiley & Sons, 1985.

[47] P. Haas and G. Shedler. Stochastic Petri net representation of discrete event simula-
tions. Software Engineering, IEEE Transactions on, 15(4):381–393, 1989.

[48] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
aspects of computing, 6(5):512–535, 1994.

[49] B. R. Haverkort. Performance of computer communication systems: a model-based approach.
John Wiley & Sons, 1998.

166 BIBLIOGRAPHY

[50] P. Heidelberger. Fast simulation of rare events in queueing and reliability models.
ACM Transactions on Modeling and Computer Simulation (TOMACS), 5(1):43–85, 1995.

[51] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate probabilistic
model checking. Lecture notes in computer science, 2937:307–329, 2004.

[52] T. Hill and P. Lewicki. Statistics: methods and applications: a comprehensive reference for
science, industry, and data mining. StatSoft, 2006.

[53] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, pages 13–30, 1963.

[54] H. Jeffreys. Theory of Probability. Oxford University Press, 1961.

[55] C. Jegourel, A. Legay, and S. Sedwards. Cross-entropy optimisation of importance
sampling parameters for statistical model checking. In Computer Aided Verification,
pages 327–342. LNCS Volume 7358, Springer, 2012.

[56] C. Jegourel, A. Legay, and S. Sedwards. A platform for high performance statistical
model checking – PLASMA. Tools and Algorithms for the Construction and Analysis of
Systems, pages 498–503, 2012.

[57] S. Jha, E. Clarke, C. Langmead, A. Legay, A. Platzer, and P. Zuliani. A Bayesian ap-
proach to model checking biological systems. In Computational Methods in Systems Bi-
ology, pages 218–234. Springer, 2009.

[58] J. Júlvez. Basic qualitative properties of Petri nets with multi-guarded transitions. In
American Control Conference. IEEE Press, 2009.

[59] S. Juneja. Estimating tail probabilities of heavy tailed distributions with asymptotically
zero relative error. Queueing Systems, 57(2):115–127, 2007.

[60] S. Juneja and P. Shahabuddin. Fast simulation of Markov chains with small transition
probabilities. Management Science, pages 547–562, 2001.

[61] S. Juneja and P. Shahabuddin. Splitting-based importance-sampling algorithm for fast
simulation of Markov reliability models with general repair-policies. IEEE Transactions
on Reliability, 50(3):235–245, 2001.

[62] S. Juneja and P. Shahabuddin. Rare event simulation techniques: An introduction and
recent advances. Simulation, pages 291–350, 2006.

[63] J. P. Katoen, M. Khattri, and I. Zapreev. A Markov reward model checker. In Second
International Conference on the Quantitative Evaluation of Systems (QEST), pages 243–244.
IEEE, 2005.

[64] J. P. Katoen and I. Zapreev. Simulation-based CTMC model checking: An empirical
evaluation. In Sixth International Conference on the Quantitative Evaluation of Systems
(QEST), pages 31–40. IEEE, 2009.

[65] C. Kelling. A framework for rare event simulation of stochastic Petri nets using
“RESTART”. In Proceedings of the 28th Winter Simulation Conference, pages 317–324.
IEEE Computer Society, 1996.

[66] O. Krafft and N. Schmitz. A note on Hoeffding’s inequality. Journal of the American
Statistical Association, pages 907–912, 1969.

[67] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In Computer Performance Evaluation: Modelling Techniques and Tools, pages 113–
140. LNCS Volume 2324, Springer, 2002.

BIBLIOGRAPHY 167

[68] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking
with PRISM: A hybrid approach. International Journal on Software Tools for Technology
Transfer, 6(2):128–142, 2004.

[69] T. L. Lai. Sequential analysis: some classical problems and new challenges. Statistica
Sinica, 11(2):303–350, 2001.

[70] A. Law and W. Kelton. Simulation modeling and analysis. McGraw-Hill New York, 1991.

[71] P. L’Ecuyer, J. Blanchet, B. Tuffin, and P. Glynn. Asymptotic robustness of estima-
tors in rare-event simulation. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 20(1):6, 2010.

[72] P. L’Ecuyer and B. Tuffin. Approximate zero-variance simulation. In Proceedings of the
2008 Winter Simulation Conference, pages 170–181. IEEE Press, 2008.

[73] P. L’Ecuyer and B. Tuffin. Approximating zero-variance importance sampling in a
reliability setting. Annals of Operations Research, 189(1):277–297, 2011.

[74] H. H. Liu. Software performance and scalability: a quantitative approach. John Wiley &
Sons, 2011.

[75] S. Luke. Fast Mersenne Twister. October 2004,
http://www.cs.gmu.edu/∼sean/research/mersenne/MersenneTwisterFast.java.

[76] K. Matthes. Zur Theorie der Bedienungsprozesse. In Proceeding of the Third Prague Con-
ference on Information Theory, Statistical Decision Functions and Random Processes, pages
513–528. Publishing House of the Czechoslovak Academy of Sciences, 1962.

[77] K. L. McMillan. Symbolic model checking. Springer, 1993.

[78] D. Miretskiy, W. Scheinhardt, and M. Mandjes. On efficiency of multilevel splitting.
Communications in Statistics – Simulation and Computation, 41(6):890–904, 2012.

[79] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, 1989.

[80] M. Nakayama and P. Shahabuddin. Quick simulation methods for estimating the un-
reliability of regenerative models of large, highly reliable systems. Probability in the
Engineering and Informational Sciences, 18(03):339–368, 2004.

[81] V. Nicola, P. Shahabuddin, and M. Nakayama. Techniques for fast simulation of mod-
els of highly dependable systems. IEEE Transactions on Reliability, 50(3):246–264, 2001.

[82] A. S. Novozhilov, G. P. Karev, and E. V. Koonin. Biological applications of the theory
of birth-and-death processes. Briefings in bioinformatics, 7(1):70–85, 2006.

[83] W. Obal and W. Sanders. An environment for importance sampling based on stochastic
activity networks. In Proceedings of the 13th Symposium on Reliable Distributed Systems,
pages 64–73. IEEE, 1994.

[84] S. Parekh and J. Walrand. A quick simulation method for excessive backlogs in net-
works of queues. IEEE Transactions on Automatic Control, 34(1):54–66, 1989.

[85] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science (FOCS), pages 46–57. IEEE, 1977.

[86] J. Propp and D. Wilson. Exact sampling with coupled Markov chains and applications
to statistical mechanics. Random Structures and Algorithms, 9(1-2):223–252, 1996.

168 BIBLIOGRAPHY

[87] D. Reijsbergen, P. T. Boer, and W. Scheinhardt. Transient behaviour in highly depend-
able Markovian systems: New regimes, multiple paths. In Proceedings of RESIM 2010,
pages 26–27.

[88] D. Reijsbergen, P. de Boer, W. Scheinhardt, and B. R. Haverkort. Rare event simulation
for highly dependable systems with fast repairs. In Proceedings of the 7th International
Conference on the Quantitative Evaluation of Systems (QEST), pages 251–260. IEEE, 2010.

[89] D. Reijsbergen, P. T. de Boer, W. Scheinhardt, and B. R. Haverkort. Fast simulation for
slow paths in Markov models. In Proceedings of RESIM 2012, pages 36–38.

[90] D. Reijsbergen, P. T. de Boer, W. Scheinhardt, and B. R. Haverkort. On hypothesis
testing for statistical model checking. SMC Workshop 2013 (to appear).

[91] D. Reijsbergen, P. T. de Boer, W. Scheinhardt, and B. R. Haverkort. Recent advances in
importance sampling for statistical model checking. SMC Workshop 2013 (to appear).

[92] D. Reijsbergen, P.-T. De Boer, W. Scheinhardt, and B. R. Haverkort. Rare event simula-
tion for highly dependable systems with fast repairs. Performance Evaluation, 69(7):336–
355, 2012.

[93] D. Reijsbergen, P. T. de Boer, W. Scheinhardt, and B. R. Haverkort. Automated rare
event simulation for stochastic petri nets. In Proceedings of the 10th International Confer-
ence on the Quantitative Evaluation of Systems (QEST), pages 372–388. Springer, 2013.

[94] D. Reijsbergen, P. T. de Boer, W. Scheinhardt, and S. Juneja. Some advances in im-
portance sampling of reliability models based on zero variance approximation. In
Proceedings of RESIM 2012, pages 30–35.

[95] A. Remke. Model checking structured infinite Markov chains. PhD thesis, University of
Twente, 2008.

[96] A. Ridder. Importance sampling simulations of Markovian reliability systems using
cross-entropy. Annals of Operations Research, 134(1):119–136, 2005.

[97] B. Ripley. Stochastic Simulation. John Wiley & Sons, 1987.

[98] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II. System level concurrency con-
trol for distributed database systems. ACM Transactions on Database Systems (TODS),
3(2):178–198, 1978.

[99] S. Ross. Stochastic Processes. John Wiley & Sons, 1996.

[100] R. Rubinstein and D. Kroese. The cross-entropy method: a unified approach to combinatorial
optimization, Monte-Carlo simulation and machine learning. Springer, 2004.

[101] A.-E. Rugina, K. Kanoun, and M. Kaâniche. A system dependability modeling frame-
work using AADL and GSPNs. In Architecting Dependable Systems IV, pages 14–38.
LNCS Volume 4615, Springer, 2007.

[102] W. Sanders and L. Malhis. Dependability evaluation using composed SAN-based re-
ward models. Journal of parallel and distributed computing, 15(3):238–254, 1992.

[103] W. Sanders and J. Meyer. Stochastic activity networks: Formal definitions and con-
cepts. Lectures on Formal Methods and Performance Analysis, 2001.

[104] I. Sason. Moderate deviations analysis of binary hypothesis testing. arXiv:1111.1995,
2011.

[105] I. Sason. On refined versions of the Azuma-Hoeffding inequality with applications in
information theory. arXiv:1111.1977, 2011.

BIBLIOGRAPHY 169

[106] K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box prob-
abilistic systems. In Computer Aided Verification, pages 202–215. LNCS Volume 3114,
Springer, 2004.

[107] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic
systems. In Computer Aided Verification, pages 266–280. LNCS Volume 3576, Springer,
2005.

[108] P. Shahabuddin. Importance sampling for the simulation of highly reliable Markovian
systems. Management Science, pages 333–352, 1994.

[109] L. Shepp. A first passage problem for the Wiener process. The Annals of Mathematical
Statistics, 38(6):1912–1914, 1967.

[110] B. Tuffin and K. Trivedi. Implementation of importance splitting techniques in stochas-
tic Petri net package. Computer Performance Evaluation. Modelling Techniques and Tools,
1786:216–229, 2000.

[111] A. Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics,
16(2):117–186, 1945.

[112] H. Younes, E. Clarke, and P. Zuliani. Statistical verification of probabilistic properties
with unbounded until. Formal Methods: Foundations and Applications, pages 144–160,
2011.

[113] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. statistical prob-
abilistic model checking: An empirical study. Tools and Algorithms for the Construction
and Analysis of Systems, pages 46–60, 2004.

[114] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. statistical prob-
abilistic model checking. International Journal on Software Tools for Technology Transfer
(STTT), 8(3):216–228, 2006.

[115] H. Younes and R. Simmons. Probabilistic verification of discrete event systems using
acceptance sampling. In Computer Aided Verification, pages 223–235. LNCS Volume
2404, Springer, 2002.

[116] H. Younes and R. Simmons. Solving generalized semi-Markov decision processes us-
ing continuous phase-type distributions. In Proceedings of the National Conference on
Artificial Intelligence, pages 742–747. AAAI Press, 2004.

[117] I. Zapreev. Model checking Markov chains: techniques and tools. PhD thesis, University of
Twente, 2008.

[118] A. Zimmermann, J. Freiheit, R. German, and G. Hommel. Petri net modelling and per-
formability evaluation with TimeNET 3.0. Computer Performance Evaluation. Modelling
Techniques and Tools, 1786:188–202, 2000.

[119] P. Zuliani, A. Platzer, and E. Clarke. Bayesian statistical model checking with appli-
cation to simulink/stateflow verification. In Proceedings of the 13th ACM international
conference on Hybrid systems: computation and control, pages 243–252. ACM, 2010.

170 BIBLIOGRAPHY

List of Acronyms

AADL Architecture Analysis & Design Language. 7, 135

BFB Balanced Failure Biasing. 15, 17, 79–84, 91, 93, 94, 97, 98, 121, 124, 126–133, 147–149

BRE Bounded Relative Error. 15–17, 64, 69, 97, 98, 101, 112, 115, 117, 139, 161

CI confidence interval. 21, 28, 29, 47, 50–52, 69–71, 129, 131, 133, 148, 149

CLT Central Limit Theorem. 21, 28, 44, 52

CSL Continuous Stochastic Logic. 3, 7, 8, 10, 12, 23, 49, 57, 58, 160

CTL Computation Tree Logic. 3–8

CTMC Continuous-Time Markov Chain. 6–10, 12, 56, 65, 66, 69, 74, 89, 94, 97, 99, 114–116,
119, 158

DDS Distributed Database System. 73–75

DTMC Discrete-Time Markov Chain. 6, 8–10, 12, 58, 97–99, 114–116, 130, 132

FCFS First Come First Serve. 73, 93, 94

ILP Integer Linear Programming. 143, 155, 161

IS Importance Sampling. 14–16, 53, 69–71, 79–84, 89, 91, 93–96, 121, 126, 130, 134, 147–149

LST Laplace-Stieltjes Transform. 86

LTS Labelled Transition System. 4, 6, 8

MC Monte Carlo. 11, 15, 16, 69–71, 80–83, 91, 93, 94, 129, 130, 147–149

PCTL Probabilistic CTL. 3, 6–8, 10, 12, 23, 49, 160

SPN Stochastic Petri Net. 7–9, 14, 17, 19, 57, 73–75, 99, 135–137, 154

SPRT Sequential Probability Ratio Test. 27, 29–32, 35, 36, 44–53, 159

VRE Vanishing Relative Error. 15, 17, 98, 99, 112–115, 161

ZVA Zero Variance Approximation. 15, 18, 98, 100, 121, 124, 126, 128–131, 133, 134, 138, 154

172 List of Acronyms

About the Author

Daniël Reijsbergen was born in The Hague, the Netherlands, on 10 September 1985 and grew
up in the charming Laakkwartier district of the city. After obtaining his gymnasiumdiploma
in 2003 he studied Econometrics and Operations Research at the Vrije Universiteit in Am-
sterdam, obtaining his B.Sc. degree in 2006 and his M.Sc. degree in 2009. Concurrently, he
completed the first year of the Arabic Language and Culture Bachelor’s programme at the
University of Amsterdam and spent four months at the Netherlands institute in Cairo. He be-
gan his work as a Ph.D. candidate at the DACS and SOR groups of the University of Twente
shortly after returning to the Netherlands, resulting in this thesis. He is currently employed
as a postdoctoral researcher at the University of Edinburgh. His research in Edinburgh is
part of the QUANTICOL project, and presently focuses on the modelling of bus movements.

The following is a list of his publications in reverse chronological order:

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and B.R. Haverkort, “On Hypothesis Test-
ing for Statistical Model Checking,” SMC Workshop 2013.

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and B.R. Haverkort, “Recent Advances in
Importance Sampling for Statistical Model Checking ,” SMC Workshop 2013.

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and B.R. Haverkort, “Automated rare
event simulation for stochastic petri nets,” in Proceedings of the 10th International Con-
ference on the Quantitative Evaluation of Systems (QEST), 2013.

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and S. Juneja, “Some advances in impor-
tance sampling of reliability models based on zero variance approximation,” RESIM
2012.

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and B.R. Haverkort, “Fast simulation for
slow paths in Markov models,” RESIM 2012.

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and B.R. Haverkort, “Rare event simula-
tion for highly dependable systems with fast repairs,” Performance Evaluation, vol. 69,
no. 7, pp. 336–355, 2012.

• D. Reijsbergen, P.T. de Boer, W. Scheinhardt, and B.R. Haverkort, “Rare event simu-
lation for highly dependable systems with fast repairs,” in Proceedings of the 7th Inter-
national Conference on the Quantitative Evaluation of Systems (QEST). IEEE, 2010, pp.
251–260.

• D. Reijsbergen, P.T. de Boer, and W. Scheinhardt, “Transient behaviour in highly de-
pendable Markovian systems: New regimes, multiple paths,” RESIM 2010.

Acknowledgements

Although the title page of this thesis mentions only a single name, the four-year process of
creating it is by no means individual. In particular, the ideas contained within its pages have
been refined and in some cases conceived during many discussions with others. Without
my supervisors, Pieter-Tjerk de Boer and Werner Scheinhardt, and the many meetings and
conversations that we have had regarding my research over the years, this thesis would be
a mere shell of its present form. My other co-authors, Boudewijn Haverkort and Sandeep
Juneja, also deserve specific mention in this context. The initial motivation for the research
underlying Chapter 2 was a discussion with Boudewijn, while discussions as part of a re-
search visit by Sandeep form the basis of Chapter 5 and particularly Chapter 6. I would also
like to specifically thank Boudewijn for making me aware of the job vacancy that led to my
current employment. I would like to thank Richard Boucherie for his input regarding this
thesis, especially regarding the structure. Furthermore, I would like to thank all the other
committee members for reading this thesis and for their constructive feedback. I would in
particular like to thank Ad Ridder for introducing me to rare event simulation and putting
me in contact with Pieter-Tjerk and Werner about the position in Twente that I would come
to fill. Credit is also due to my (co-)promotors for writing the research proposal that led to
this thesis, and to NWO (and, by extension, the Dutch taxpayer) for funding it.

I would also like to thank all the staff at the DACS and SOR groups for making work
enjoyable. A few of them deserve particular mention. Stephan, Hamed and Jasper for being
fun officemates; Martijn for the many lunch walks and for heroically saving my bicycle at
Hengelo station; Anja for being a fun travelling companion for the ROCKS meetings; Yanting
for being both a fun and reliable assignment partner for the LNMB courses and Mihaela for
the many lunch sessions. I would also like to thank Anne Remke and Dick Meijer for the
good cooperation on the coursework in which I was involved.

Finally, I would of course like to thank my family and friends (which again includes Mar-
tijn and Stephan) for all the time spent outside working hours. Your impact on the contents
of this thesis may be less visible, but it is certainly present.

